基于阻抗法煤体中瓦斯水合动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mine gas hydration kinetics in coal based on impedance method
  • 作者:张强 ; 吴强 ; 张辉 ; 张保勇 ; 刘传海
  • 英文作者:ZHANG Qiang;WU Qiang;ZHANG Hui;ZHANG Baoyong;LIU Chuanhai;Department of Safety Engineering,Heilongjiang University of Science & Technology;College of Material Science and Engineering,Harbin University of Science & Technology;State Key Laboratory of Basic Research of Hydrocarbon Gas Transportation Pipeline Safety;
  • 关键词:瓦斯 ; 水合物 ; 阻抗 ; 动力学 ; 孔隙 ; 裂隙
  • 英文关键词:mine gas;;hydrate;;impedance characteristic;;kinetics;;pore;;fractal
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:黑龙江科技大学安全工程学院;哈尔滨理工大学材料学院;瓦斯等烃气输运管网安全基础研究国家级专业中心实验室;
  • 出版日期:2017-09-15
  • 出版单位:煤炭学报
  • 年:2017
  • 期:v.42;No.276
  • 基金:国家自然科学基金资助项目(51404102,51334005);; 2016年安全生产重大事故防治关键技术科技项目(heilongjiang-0002-2016AQ)
  • 语种:中文;
  • 页:MTXB201709019
  • 页数:9
  • CN:09
  • ISSN:11-2190/TD
  • 分类号:152-160
摘要
为探寻水合物技术在瓦斯突出防治方向上的应用工艺,利用瓦斯水合固化过程阻抗特性监测实验装置,研究4组不同煤体孔隙裂隙分布对瓦斯水合过程的影响,获取了煤体中瓦斯水合过程阻抗曲线,计算了瓦斯水合物生长速率与含气量。结果表明:实验釜上层位阻值增大,中层位与下层位阻值减小,瓦斯水合物集中在实验釜上层位与中层位形成;相同热力学条件下4组体系中瓦斯水合物生长速率分别为0.180,0.083,1.747,0.448 cm~3/min,水合物含气率分别为1.9×10~(-3),6.3×10~(-3),2.1×10~(-3),1.6×10~(-3)mol/cm~3,说明孔隙裂隙较发育煤体中瓦斯水合速率较快,所形成水合物具有较高的含气量。不同孔隙裂隙煤体中单位体积瓦斯水合物含气量不同,孔隙裂隙较发育煤体中瓦斯水合物形成量较大,基于准均匀占据理论,孔隙裂隙较发育煤体中瓦斯水合物所含空晶笼较多。
        To explore the application of hydrate technology in preventing coal and gas outburst,the impedance monitoring experiment devices of mine gas curing process is used to study the effect of four kinds of different pore and fractal distributions on mine gas hydration process. Meanwhile,the impedance characteristic curve of mine gas hydration process in coal is obtained.The growth rate and gas content of mine gas hydrate are calculated. The results show that impedance value increases in the upper layer and it decreases in the middle and lower layers of the experimental reactor.Mine gas hydrate mainly forms in the upper and middle layers of the experimental reactor.Under the same thermodynamic conditions,the gas hydrate formation rate in the four experimental systems is 0. 180,0. 083,1. 747 and 0. 448 cm~3/min respectively.The gas fraction is 1.9×10~(-3),6.3×10~(-3),2.1×10~(-3)and 1.6×10~(-3)mol/cm~3 respectively.The above data indicates that the mine gas hydration rate is quicker in the coal which contains more pore and fractures due to the high gas content in mine gas hydrate.The gas content of unit volume mine gas hydrate is different with the var-ying pore and fractures in coal and the quantity of mine gas hydrate is larger in the coal with more pore and fractures.Based on the theory of homogeneous occupy,the mine gas hydrate contains more hollow cages in the coal with more pore and fractures.
引文
[1]SLOAN E D,KOH C A.Clathrate hydrates of natural gases(3rded)[M].Boca Raton:CRC Press,2008:10-20.
    [2]李明川,樊栓狮.天然气水合物注热水分解径向数学模型[J].高校化学工程学报,2013,27(5):761-766.LI Mingchuan,FAN Shuanshi.Radial mathematical model for hot water dissociation frontal brim of natural gas hydrates[J].J Chem Eng of Chinese Univ,2013,27(5):761-766.
    [3]谢振兴,谢应明,周兴法,等.充注压力对压缩式制冷循环连续制备CO2水合物的影响[J].化工学报,2014,65(6):2031-2037.XIE Zhenxing,XIE Yingming,ZHOU Xingfa,et al.Effects of charge pressure on continuous production of CO2hydrate in compression refrigeration cycle[J].CIESC Journal,2014,65(6):2031-2037.
    [4]樊栓狮,刘建辉,郎雪梅,等.气体水合物及其衍生技术的研究进展[J].华南理工大学学报,2012,40(11):37-44.FAN Shuanshi,LIU Jianhui,LANG Xuemei,et al.Research progress of gas hydrates and hydrate-based technologies[J].Journal of South China University of Technology,2012,40(11):37-44.
    [5]耿春宇,丁丽颖,韩清珍,等.气体分子对甲烷水合物稳定性的影响[J].物理化学学报,2008,24(4):595-600.GENG Chunyu,DING Liying,HAN Qingzhen,et al.Influence of gas molecule on stability of methane hydr ate[J].Acta Phys.-Chim.Sin.,2008,24(4):595-600.
    [6]PURWANTO Y A,OSHITA S,SEO Y,et al.Concentration of liquid foods by the use of gas hydrate[J].Journal of Food Engineering,2001,47:133-138.
    [7]GUO K H,SHU B F,YANG W J.Advances and applications of gas hydrate thermal energy storage technology[A].Proceedings of1stTrabzon International Energy&Environment Symposium[C].1996:381-386.
    [8]庞维新,孙福街,李清平,等.甲烷水合物再汽化分解动力学模型建立[J].化工学报,2011,62(7):1906-1914.PANG Weixin,SUN Fujie,LI Qingping,et al.Kinetic model investigation of regasification of methane hydrate[J].CIESC Journal,2011,62(7):1906-1914.
    [9]周兴法,谢应明,杨亮,等.直接接触式制备CO2水合物的生长和蓄冷特性[J].化工学报,2015,66(4):1521-1528.ZHOU Xingfa,XIE Yingming,YANG Liang,et al.Characteristics of growth and cool storage of CO2hydrates produced in direct-contact way[J].CIESC Journal,2015,66(4):1521-1528.
    [10]XU C,LI X,LQ,et al.Hydrate-based CO2(carbon dioxide)capture from IGCC(integrated gasification combined cycle)synthesis gas using bubble method with a set of visual equipment[J].Energy,2012,44:358-366.
    [11]WU Q,ZHANG Q,ZHANG B Y.Influence of super-absorbent polymer on the growth rate of gas hydrate[J].Safety Science,2012,50:865-869.
    [12]张强,吴强,张保勇,等.Na Cl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J].煤炭学报,2015,40(10):2430-2436.ZHANG Qiang,WU Qiang,ZHANG Baoyong,et al.Nucleation kinetics mechanism of multi-component mine gas hydrate in Na Cl-SDS mixed solutions[J].Journal of China Coal Society,2015,40(10):2430-2436.
    [13]吴强,李成林,江传力.瓦斯水合物生成控制因素探讨[J].煤炭学报,2005,30(3):283-287.WU Qiang,LI Chenglin,JIANG Chuanli.Discussion on the control factors of form ing gas hydrate[J].Journal of China Coal Society,2005,30(3):283-287.
    [14]梁冰,秦冰,孙维吉.基于灰靶决策模型的煤与瓦斯突出可能性评价[J].煤炭学报,2011,36(12):1974-1978.LIANG Bing,QIN Bing,SUN Weiji.Possibility assessment of coal-gas outburst based on grey target model[J].Journal of China Coal Society,2011,36(12):1974-1978.
    [15]YUAN L.Theory and practice of integrated coal production and gas extraction[J].International Journal of Coal Science&Technology,2015,2(1):3-11.
    [16]CHENG Y P,WANG L,LIU H Y,et al.Definition,theory,methods,and applications of the safe and efficient simultaneous extraction of coal and gas[J].International Journal of Coal Science&Technology,2015,2(1):52-65.
    [17]吴强,朱福良,高霞,等.晶体类型对含瓦斯水合物煤体力学性质的影响[J].煤炭学报,2014,39(8):1492-1496.WU Qiang,ZHU Fuliang,GAO Xia,et al.Effect of hydrate crystal type on mechanical properties of gas hydrate-bearing coal[J].Journal of China Coal Society,2014,39(8):1492-1496.
    [18]LI X S,ZHANG Y,LI G.Gas hydrate equilibrium dissociation conditions in porous media using two thermodynamic approaches[J].J.Chem.Thermodyn.,2008,40:1464-1474.
    [19]张剑,业渝光.天然气水合物探测技术的模拟实验研究[J].海洋地质动态,2003,19(6):28-30.ZHANG Jian,YE Yuguang.Detecting technology in the eperimental study of gas hydrate[J].Marine Geology Letters,2003,19(6):28-30.
    [20]孟庆国,业渝光,王士财,等.电阻探测技术在天然气水合物模拟实验中的应用[J].青岛大学学报(工程技术版),2008,23(3):15-18.MENG Qingguo,YE Yuguang,WANG Shicai,et al.Application of resistance detecting technology in the eperimental study of gas hydrate[J].Journal of Qingdao University(E&T),2008,23(3):15-18.
    [21]任静雅,鲁晓兵,张旭辉.水合物沉积物电阻特性研究初探[J].岩土工程学报,2013,35(1):161-165.REN Jingya,LU Xiaobing,ZHANG Xuhui.Preliminary study on electric resistance of hydrate-bearing sediments[J].Chinese Journal of Geotechnical Engineering,2013,35(1):161-165.
    [22]赵洪伟,陈建文,龚建明,等.天然气水合物饱和度的预测方法[J].海洋地质动态,2004,20(6):22-24.ZHAO Hongwei,CHEN Jianwen,GONG Jianming,et al.Prediction method of gas hydrate saturation[J].Marine Geology Letters,2004,20(6):22-24.
    [23]赵洪伟,刁少波,业渝光,等.多孔介质中水合物阻抗探测技术[J].海洋地质与第四纪地质,2005,25(1):137-142.ZHAO Hongwei,DIAO Shaobo,YE Yuguang,et al.Technique of detecting impedanceof hydrate in porousmedium[J].Marine.Geology&Qua.Terna.Ry.Geology,2005,25(1):137-142.
    [24]张郁,吴慧杰,李小森,等.多孔介质中甲烷水合物的生成特性的实验研究[J].化学学报,2011,69(19):2221-2227.ZHANG Yu,WU Huijie,LI Xiaosen,et al.Experimental study on formation behavior of methane hydrate in porous media[J].Acta Chimica Sinica,2011,69(19):2221-2227.
    [25]臧小亚,梁德青,吴能友.多孔介质中甲烷水合物的生成特性研究进展[J].新能源进展,2015,3(2):131-138.ZANG Xiaoya,LIANG Deqing,WU Nengyou.Research progress on methane hydrate formation kinetics in porous media[J].Advances in New and Renewable Energy,2015,3(2):131-138.
    [26]LI S X,XIA X R,XUAN J,et al.Resistivity in formation and decomposition of natural gas hydrate in porous medium[J].Chinese Journal of Chemical Engineering,2010,18:39-42.
    [27]魏明尧,王春光,崔光磊,等.损伤和剪胀效应对裂隙煤体渗透率演化规律的影响研究[J].岩土力学,2016,37(2):574-582.WEI Mingyao,WANG Chunguang,CUI Guanglei,et al.Influences of damage and shear dilation on permeability evolution of fractured coal[J].Rock and Soil Mechanics,2016,37(2):574-582.
    [28]冯子军,赵阳升.煤的热解破裂过程-孔裂隙演化的显微CT细观特征[J].煤炭学报,2015,40(1):103-108.FENG Zijun,ZHAO Yangsheng.Pyrolytic cracking in coal:Meso-characteristics of pore and fissure evolution observed by microCT[J].Journal of China Coal Society,2015,40(1):103-108.
    [29]JU Y W,KRAY L B,LI X S,et al.Micro-structural evolution and their effects on physical properties in different types of tectonically deformed coals[J].International Journal of Coal Science&Technology,2014,1(3):264-275.
    [30]李伟,姚惠芳,刘鸿福,等.基于显微CT的不同煤体结构煤三维孔隙精细表征[J].煤炭学报,2014,39(6):1127-1132.LI Wei,YAO Huifang,LIU Hongfu,et al.Advanced characterization of three-dimensional pores in coals with different coal-body structure by micro-CT[J].Journal of China Coal Society,2014,39(6):1127-1132.
    [31]胡国忠,黄兴,许家林,等.可控微波场对煤体的孔隙结构及瓦斯吸附特性的影响[J].煤炭学报,2015,40(S2):374-379.HU Guozhong,HUANG Xing,XU Jialin,et al.Effect of microwave field on pore structure and absorption of methane in coal[J].Journal of China Coal Society,2015,40(S2):374-379.
    [32]陈强,刘昌岭,业渝光,等.多孔介质中气体水合物的成核研究[J].石油学报,2008,24(3):345-349.CHEN Qiang,LIU Changling,YE Yuguang,et al.Preliminary research about the nucleation of gas hydrate in porous media[J].Acta Petrolei Sinica,2008,24(3):345-349.
    [33]陆现彩,杨涛,刘显东,等.多孔介质中天然气水合物稳定性的实验研究进展[J].现代地质,2005,19(1):89-95.LU Xiancai,YANG Tao,LIU Xiandong,et al.Recent advance in study of methane hydrate stability in porous media[J].Geoscience,2005,19(1):89-95.
    [34]MAKOGON Y F.Hydrate of natural gas[M].Tulsa:Penn Well,1981:160-165.
    [35]ZHANG W,WILDER J W,SMITH D H.Methane hydrate-ice equilibria in porousmedia[J].The Journal of Physical Chemistry B,2003,107(47):13084-13089.
    [36]OHBA T,OMORI T,KANOH H,et al.Cluster structure of super-critical CH4confined in carbon nanospaces with in situ highpressure small-angle X-ray scattering and grand canonical Monte carlo simulation[J].The Journal of Physical Chemistry B,2004,108:27-30.
    [37]臧小亚,梁德青,吴能友.细砂沉积物中水合物生成过程研究[J].中国科学:地球科学,2013,43(3):360-367.ZANG Xiaoya,LIANG Deqing,WU Nengyou.Gas hydrate formation in fine sand[J].Science China:Earth Sciences,2013,43(3):360-367.
    [38]梁德青,臧小亚,吴能友.介观孔隙中天然气水合物生成过程模拟[J].天然气工业,2013,33(7):24-28.LIANG Deqing,ZANG Xiaoya,WU Nengyou.A simulation study of natural gas hydrate generation in mesoscopic-scale pores[J].Natural Gas Industry,2013,33(7):24-28.
    [39]ZHONG D L,SUN D J,LU Y Y,et al.Adsorption-hydrate hybrid process for methane separation from a CH4/N2/O2gas mixture using pulverized coal particles[J].Ind.Eng.Chem.Res.,2014,53:15738-15746.
    [40]ZHAO J Z,ZHAO Y S,LIANG W G.Hydrate-based gas separation for methane recovery from coal mine gas using tetrahydrofuran[J].Energy Technology,2016,4:864-869.
    [41]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2007:56-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700