用户名: 密码: 验证码:
应力主轴旋转平面方位对粒状介质变形的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of the orientation of the principal stress axes rotation plane on deformation of granular matter
  • 作者:薛龙 ; 王睿 ; 张建民
  • 英文作者:XUE Long;WANG Rui;ZHANG Jianmin;Institute of Geotechnical Engineering,Tsinghua University;National Engineering Laboratory for Green and Safe Construction Technology in Urban Rail Transit,Tsinghua University;
  • 关键词:土力学 ; 应力主轴旋转平面 ; 离散元 ; 各向异性 ; 中主应力系数
  • 英文关键词:soil mechanics;;principal stress axes rotation plane;;discrete element method(DEM);;anisotropy;;intermediate principal stress coefficient
  • 中文刊名:YSLX
  • 英文刊名:Chinese Journal of Rock Mechanics and Engineering
  • 机构:清华大学土木水利学院岩土工程研究所;清华大学城市轨道交通绿色与安全建造技术国家工程实验室;
  • 出版日期:2019-04-15
  • 出版单位:岩石力学与工程学报
  • 年:2019
  • 期:v.38;No.360
  • 基金:国家自然科学基金面上项目(51678346);国家自然科学基金青年项目(51708332)~~
  • 语种:中文;
  • 页:YSLX2019S1052
  • 页数:10
  • CN:S1
  • ISSN:42-1397/O3
  • 分类号:529-538
摘要
利用离散元法,通过力线柔性边界的方式,实现了主应力在横观各向同性粒状介质试样任意平面内的旋转。在不同应力主轴旋转面与试样沉积面夹角θ下,试样均产生累积性体缩,且θ影响着试样在不同中主应力系数下体应变的相对大小。θ=0°时,试样在应力主轴旋转面内各向同性,其体应变、应变增量方向与应力方向非共轴角、颗粒平均配位数均不随主应力旋转而周期性波动。试样在应力主轴旋转面内正应变的累积方向随θ的变化而调整。颗粒主接触方向与主应力方向是否同步可能是诸多宏观量是否波动的细观原因之一,且该同步性受θ影响较大。
        Using 3D discrete element method with force-line flexible boundary,principal stress axes rotation(PSAR) loading is achieved in arbitrary plane of cross-anisotropic granular matter. Volume strain is always contractive for various θ,the angle between the specimen's bedding plane and the PSAR plane,and its relative magnitude varies under different intermediate principal stress coefficients. When θ = 0°, the fluctuation of the volume strain,the non-coaxial angle between the strain increment direction and the principal stress direction,and the coordination number of the specimen disappears,as the specimen is "inherently isotropic" in the PSAR plane.The direction of the normal strain in the PSAR plane changes for various θ. The relationship between the principal contact normal fabric orientation and the principal stress orientation is a likely explanation of the fluctuation of the macroscopic quantities,which is strongly influenced by θ.
引文
[1]ISHIHARA K,TOWHATA I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations,1983,23(4):11-26.
    [2]王常晶,陈云敏.移动荷载引起的地基应力状态变化及主应力轴旋转[J].岩石力学与工程学报,2007,26(8):1 698-1 704.(WANGChangjing,CHEN Yunmin.Stress state variation and principal stress axes rotation of ground induced by moving loads[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(8):1 698-1 704.(in Chinese))
    [3]BROMS B B,CASBARIAN A O.Effects of rotation of the principal stress axes and of the intermediate principal stress on the shear strength[C]//Proceedings of the 6th ICSMFE.Montreal,Canada:[s.n.],1965:179-183.
    [4]SYMES M J,GENS A,HIGHT D W.Undrained anisotropy and principal stress rotation in saturated sand[J].Géotechnique,1984,34(1):11-27.
    [5]SYMES M J,GENS A,HIGHT D W.Drained principal stress rotation in saturated sand[J].Géotechnique,1988,38(1):59-81.
    [6]MIURA K,MIURA S,TOKI S.Deformation behavior of anisotropic dense sand under principal stress axes rotation[J].Soils and Foundations,1986,26(1):36-52.
    [7]NAKATA Y,HYODO M,MURATA H,et al.Flow deformation of sands subjected to principal stress rotation[J].Soils and Foundations,1998,38(2):115-128.
    [8]刘超,张建民.应力主轴往返旋转条件下砂土变形规律试验研究[J].地震工程学报,2017,39(1):28-31.(LIU Chao,ZHANGJianmin.Experimental research on deformation of sand under principal stress back-and-forth rotation[J].China Earthquake Engineering Journal,2017,39(1):28-31.(in Chinese))
    [9]LADE P V,ABELEV A V.Effects of cross anisotropy on three-dimensional behavior of sand.II:volume change behavior and failure[J].Journal of Engineering Mechanics,2003,129(2):167-174.
    [10]MA G,CHANG X L,ZHOU W,et al.Mechanical response of rockfills in a simulated true triaxial test:A combined FDEM study[J].Geomechanics and Engineering,2014,7(3):317-333.
    [11]马刚,刘嘉英,常晓林,等.堆石体在真三轴应力状态下的非共轴性与剪胀特性[J].中南大学学报:自然科学版,2016,47(5):1 697-1 707.(MA Gang,LIU Jiaying,CHANG Xiaolin,et al.Non-coaxiality and dilatancy of rockfill materials under true triaxial stress condition[J].Journal of Central South University:Science and Technology,2016,47(5):1 697-1 707.(in Chinese))
    [12]YAO Y P,HOU W,ZHOU A N.UH model:three-dimensional unified hardening model for overconsolidated clays[J].Géotechnique,2009,59(5):451-469.
    [13]YANG Z X,LI X S,YANG J.Undrained anisotropy and rotational shear in granular soil[J].Géotechnique,2007,57(4):371-384.
    [14]TONG Z X,YU Y L,ZHANG J M,et al.Deformation behavior of sands subjected to cyclic rotation of principal stress axes[J].Chinese Journal of Geotechnical Engineering,2008,30(8):1 196-1 202.
    [15]TONG Z X,ZHANG J M,YU Y L,et al.Drained deformation behavior of anisotropic sands during cyclic rotation of principal stress axes[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(11):1 509-1 518.
    [16]童朝霞,张建民,于艺林,等.中主应力系数对应力主轴循环旋转条件下砂土变形特性的影响[J].岩土工程学报,2009,31(6):946-952.(TONG Zhaoxia,ZHANG Jianmin,YU Yilin,et al.Effects of intermediate principal stress parameter on deformation behavior of sands under cyclic rotation of principal stress axes[J].Chinese Journal of Geotechnical Engineering,2009,31(6):946-952.(in Chinese))
    [17]CUNDALL P A,STRACK O D L.Discrete numerical model for granular assemblies[J].Géotechnique,1979,29(1):47-65.
    [18]?MILAUER V,CATALANO E,CHAREYRE B,et al.Yade documentation(the 2nd version)[EB/OL].http://yade-dem.org/doc/,2015.2016-04-18.
    [19]FU P C,DAFALIAS Y F.Study of anisotropic shear strength of granular materials using DEM simulation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(10):1 098-1 126.
    [20]BAGI K.Stress and strain in granular assemblies[J].Mechanics of Materials,1996,22(3):165-177.
    [21]FU P C,DAFALIAS Y F.Quantification of large and localized deformation in granular materials[J].International Journal of Solids and Structures,2012,49(13):1 741-1 752.
    [22]ODA M,NAKAYAMA H.Introduction of inherent anisotropy of soils in the yield function[J].Micromechanics of Granular Materials,1988,14(1):81-90.
    [23]SATAKE M.Fabric tensor in granular materials:IUTAM conference on deformation and failure of granular materials[M].Delft:Balkema,1982:63-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700