钴铬颗粒刺激成骨细胞前体细胞可能加重假体周围的炎症反应(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cobalt-chromium particles inducing preosteoblasts may aggravate periprosthetic inflammation
  • 作者:姜建浩 ; 李朋 ; 杜刚强 ; 刘宏智 ; 王辉 ; 张锴 ; 杨上游 ; 杨淑野
  • 英文作者:Jiang Jianhao;Li Peng;Du Gangqiang;Liu Hongzhi;Wang Hui;Zhang Kai;Yang Shangyou;Yang Shuye;Department of Traumatic Orthopedics, Binzhou Medical University Hospital;Department of Orthopedic Surgery, the University of Kansas School of Medicine-Wichita;Department of Biological Sciences, Wichita State University;
  • 关键词:成骨细胞前体细胞 ; 破骨细胞 ; 无菌性假体松动 ; 磨损颗粒 ; 金属离子 ; 全关节置换 ; 微型计算机断层扫描 ; 拔钉实验
  • 英文关键词:preosteoblasts;;osteoclasts;;aseptic loosening;;wear debris;;metal ion;;total arthroplasty;;micro-CT;;pull-out test
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:滨州医学院附属医院创伤骨科;美国堪萨斯州堪萨斯大学威寄托骨科中心;美国堪萨斯州威寄托州立大学生物系;
  • 出版日期:2019-07-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.883
  • 基金:the National Natural Science Foundation of China,No.81241061(to ZK);; the Medical and Health Technology Development Project of Shandong Province,No.2016WS0023(to YSY);; the Science Research Startup Foundation of Binzhou Medical University,No.BY2016KYQD19(to YSY)~~
  • 语种:英文;
  • 页:XDKF201926004
  • 页数:8
  • CN:26
  • ISSN:21-1581/R
  • 分类号:7-14
摘要
背景:关节置换已经成为治疗终末期关节炎的最有效措施。然而,无菌性假体松动是关节置换的主要长期并发症。如何减缓假体松动成为研究的热点。目的:研究在假体松动过程中,不同浓度钴铬颗粒刺激成骨细胞前体细胞的生物学反应。方法:(1)体外实验:成骨细胞前体细胞以成骨细胞诱导液培养后,用0.3或1.25 g/L的钴铬颗粒进行刺激;(2)体内实验:将钛钉置入严重联合免疫缺陷小鼠(n=18)胫骨近端模拟膝关节置换。术后1周,将经过钴铬颗粒刺激的5×10~5个成骨细胞前体细胞注射入膝关节腔内。稳定对照组(n=6):小鼠胫骨仅置入钛钉,无钴铬颗粒和细胞处理;松动对照组(n=6):小鼠置入钛钉前,向胫骨髓腔注入4×10~4个钴铬颗粒;钴铬颗粒处理组(n=6):小鼠置入钛钉前,向胫骨髓腔注入4×10~4个钴铬颗粒,关节腔内注射用钴铬合金颗粒刺激的成骨细胞前体细胞。结果与结论:(1)体外实验:随着钴铬颗粒浓度的增加,碱性磷酸酶和成骨基因表达呈下降趋势;(2)体内实验:与松动组相比,关节腔内注射经过钴铬颗粒刺激的成骨细胞前体细胞导致假体周围炎性假膜的增厚,骨与假体界面剪切力的减少,骨密度和骨体积的降低,抗酒石酸酸性磷酸酶阳性细胞数量的增加;(3)结果提示钴铬颗粒抑制成骨细胞前体细胞的生长、成熟以及功能的发挥。钴铬颗粒刺激的成骨细胞前体细胞可能加重假体周围的炎症反应,促进破骨细胞的分化。
        BACKGROUND: Arthroplasty has been the most effective treatment for the end-stage osteoarthritis. However, aseptic loosening is the main long-term complication of arthroplasty. How to ameliorate aseptic loosening is an issue of concern. OBJECTIVE: To investigate the biological behavior of preosteoblasts induced with cobalt-chromium particles during aseptic loosening process. METHODS:(1) In vitro experiment: preosteoblasts were cultured in an osteoblast-induction medium and induced with different doses(0.3 or 1.25 g/L) of cobalt-chromium particles.(2) In vivo experiment: titanium screws were implanted to proximal tibia of server combined with immune-deficiency mice to simulate knee joint arthroplasty. Cobalt-chromium particles inducing MC3 T3-E1(5×10~5) were intra-articularly injected into the implanted knee at 1 week after surgery. Stable group(n=6): screw implanted mice without local particle insertion and cells transfusion; loosening group(n=6): mice were given an intra-articular injection of cobalt-chromium particles(4×10~4) before screw implantation; cobalt-chromium group: mice were given an intra-articular injection of preosteoblasts induced by cobalt-chromium particles and cobalt-chromium particles(4×10~4) before screw implantation. RESULTS AND CONCLUSION:(1) In vitro experiment: with the increasing of cobalt-chromium particles, alkaline phosphatase and osteogenic gene expression was decreasing.(2) In vivo experiment: intra-articular injection of cobalt-chromium particles inducing MC3 T3-E1 cells resulted in thicker peri-implant pseudomembrane, reduced the shear strength of bone-implant, decreased bone mineral density and bone volume, and increased the number of positive cells for tartrate-resistant acid phosphatase.(3) These results indicate that cobalt-chromium particles inhibit the growth, maturation and functions of preosteoblastic cells. Cobalt-chromium particles inducing preosteoblasts may aggravate periprosthetic inflammation and promote osteoclastogenesis.
引文
[1]Pajarinen J,Lin TH,Nabeshima A,et al.Mesenchymal stem cells in the aseptic loosening of total joint replacements.J Biomed Mater Res A.2017;105(4):1195-1207.
    [2]Goodman SB,Gibon E,Pajarinen J,et al.Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement.J R Soc Interface.2014;11(93):20130962.
    [3]Lombardi AV Jr,Barrack RL,Berend KR,et al.The Hip Society:algorithmic approach to diagnosis and management of metal-on-metal arthroplasty.J Bone Joint Surg Br.2012;94(11 Suppl A):14-18.
    [4]Marti A.Cobalt-base alloys used in bone surgery.Injury.2000;31 Suppl 4:18-21.
    [5]Jiang Y,Jia T,Gong W,et al.Effects of Ti,PMMA,UHMWPE,and Co-Cr wear particles on differentiation and functions of bone marrow stromal cells.J Biomed Mater Res A.2013;101(10):2817-2825.
    [6]Kadoya Y,Revell PA,Kobayashi A,et al.Wear particulate species and bone loss in failed total joint arthroplasties.Clin Orthop Relat Res.1997;(340):118-129.
    [7]Yang SY,Zhang K,Bai L,et al.Polymethylmethacrylate and titanium alloy particles activate peripheral monocytes during periprosthetic inflammation and osteolysis.J Orthop Res.2011;29(5):781-786.
    [8]Zhao YP,Wei JL,Tian QY,et al.Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFαsignaling.Sci Rep.2016;6:20909.
    [9]An S,Han F,Hu Y,et al.Curcumin Inhibits PolyethyleneInduced Osteolysis via Repressing NF-κB Signaling Pathway Activation.Cell Physiol Biochem.2018;50(3):1100-1112.
    [10]Man K,Jiang LH,Foster R,et al.Immunological Responses to Total Hip Arthroplasty.J Funct Biomater.2017;8(3):E33.
    [11]Dyskova T,Gallo J,Kriegova E.The Role of the Chemokine System in Tissue Response to Prosthetic By-products Leading to Periprosthetic Osteolysis and Aseptic Loosening.Front Immunol.2017;8:1026.
    [12]Wang Z,Liu N,Liu K,et al.Autophagy mediated CoCrMo particle-induced peri-implant osteolysis by promoting osteoblast apoptosis.Autophagy.2015;11(12):2358-2369.
    [13]Pajarinen J,Nabeshima A,Lin TH,et al.Murine Model of Progressive Orthopedic Wear Particle-Induced Chronic Inflammation and Osteolysis.Tissue Eng Part C Methods.2017;23(12):1003-1011.
    [14]Terkawi MA,Hamasaki M,Takahashi D,et al.Transcriptional profile of human macrophages stimulated by ultra-high molecular weight polyethylene particulate debris of orthopedic implants uncovers a common gene expression signature of rheumatoid arthritis.Acta Biomater.2018;65:417-425.
    [15]Ollivere B,Wimhurst JA,Clark IM,et al.Current concepts in osteolysis.J Bone Joint Surg Br.2012;94(1):10-15.
    [16]Wooley PH,Morren R,Andary J,et al.Inflammatory responses to orthopaedic biomaterials in the murine air pouch.Biomaterials.2002;23(2):517-526.
    [17]Zhang K,Jia TH,McQueen D,et al.Circulating blood monocytes traffic to and participate in the periprosthetic tissue inflammation.Inflamm Res.2009;58(12):837-844.
    [18]Yang SY,Nasser S,Markel DC,et al.Human periprosthetic tissues implanted in severe combined immunodeficient mice respond to gene transfer of a cytokine inhibitor.JBone Joint Surg Am.2005;87(5):1088-1097.
    [19]Thomas P,Thomsen M.Allergy diagnostics in implant intolerance.Orthopade.2008;37(2):131-135.
    [20]Nakamura-Ota M,Hamanaka R,Yano H,et al.A new murine osteoblastic cell line immortalized with the SV40large T antigen.Cell Tissue Bank.2014;15(3):373-380.
    [21]Bauer TW.Particles and periimplant bone resorption.Clin Orthop Relat Res.2002;(405):138-143.
    [22]Au A,Ha J,Hernandez M,et al.Nickel and vanadium metal ions induce apoptosis of T-lymphocyte Jurkat cells.JBiomed Mater Res A.2006;79(3):512-521.
    [23]Cadosch D,Sutanto M,Chan E,et al.Titanium uptake,induction of RANK-L expression,and enhanced proliferation of human T-lymphocytes.J Orthop Res.2010;28(3):341-347.
    [24]Jiang Y,Jia T,Gong W,et al.Titanium particle-challenged osteoblasts promote osteoclastogenesis and osteolysis in a murine model of periprosthestic osteolysis.Acta Biomater.2013;9(7):7564-7572.
    [25]Jacobs JJ,Gilbert JL,Urban RM.Corrosion of metal orthopaedic implants.J Bone Joint Surg Am.1998;80(2):268-282.
    [26]Sunderman FW Jr,Hopfer SM,Swift T,et al.Cobalt,chromium,and nickel concentrations in body fluids of patients with porous-coated knee or hip prostheses.JOrthop Res.1989;7(3):307-315.
    [27]Purdue PE,Koulouvaris P,Potter HG,et al.The cellular and molecular biology of periprosthetic osteolysis.Clin Orthop Relat Res.2007;454:251-261.
    [28]Hirakawa K,Jacobs JJ,Urban R,et al.Mechanisms of failure of total hip replacements:lessons learned from retrieval studies.Clin Orthop Relat Res.2004;(420):10-17.
    [29]Tucci M,Tsao A,Hughes J Jr.Analysis of capsular tissue from patients undergoing primary and revision total hip arthroplasty.Biomed Sci Instrum.1996;32:119-125.
    [30]Chang YS,Kobayashi M,Li ZL,et al.Significance of peak value and duration of the interfacial shear load in evaluation of the bone-implant interface.Clin Biomech(Bristol,Avon).2003;18(8):773-779.
    [31]Goodman S,Ma T,Trindade M,et al.COX-2 selective NSAID decreases bone ingrowth in vivo.J Orthop Res.2002;20(6):1164-1169.
    [32]El-Warrak AO,Olmstead M,Schneider R,et al.An experimental animal model of aseptic loosening of hip prostheses in sheep to study early biochemical changes at the interface membrane.BMC Musculoskelet Disord.2004;5:7.
    [33]Warme BA,Epstein NJ,Trindade MC,et al.Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation.J Biomed Mater Res B Appl Biomater.2004;71(2):360-366.
    [34]Allen M,Brett F,Millett P,et al.The effects of particulate polyethylene at a weight-bearing bone-implant interface.Astudy in rats.J Bone Joint Surg Br.1996;78(1):32-37.
    [35]Millett PJ,Allen MJ,Bostrom MP.Effects of alendronate on particle-induced osteolysis in a rat model.J Bone Joint Surg Am.2002;84-A(2):236-249.
    [36]Yang S,Zhang K,Li F,et al.Biological responses of preosteoblasts to particulate and ion forms of Co-Cr alloy.JBiomed Mater Res A.2015;103(11):3564-3571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700