考虑温度影响的软岩弹塑性本构模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Elastoplastic constitutive model for soft rock considering temperature effect
  • 作者:杨骐莱 ; 熊勇林 ; 张升 ; 刘干斌 ; 郑荣跃 ; 张锋
  • 英文作者:YANG Qi-lai;XIONG Yong-lin;ZHANG Sheng;LIU Gan-bin;ZHENG Rong-yue;ZHANG Feng;Institute of Geotechnical Engineering, Ningbo University;School of Civil Engineering, Central South University;Nagoya Institute of Technology;
  • 关键词:软岩 ; 温度 ; 弹塑性 ; 本构模型
  • 英文关键词:soft rock;;temperature;;thermal elastoplastic;;constitutive model
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:宁波大学岩土工程研究所;中南大学土木工程学院;名古屋工业大学;
  • 出版日期:2018-10-15 14:46
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.302
  • 基金:国家自然科学基金资助项目(No.51608385,No.51478228,No.51778303);; 浙江省新苗人才计划(No.2018R405073)~~
  • 语种:中文;
  • 页:YTLX201905032
  • 页数:9
  • CN:05
  • ISSN:42-1199/O3
  • 分类号:278-286
摘要
煤矿的深度开挖、核废料的地下储存和能量桩的广泛应用等诸多的岩土工程问题都需要考虑温度对软岩力学特性的影响。为了能较为全面地描述软岩的力学特性,基于上下负荷加载面,引入温度等价应力的概念,在tij应力空间下构建了一个可同时考虑温度效应、中间主应力影响、结构性、超固结性等软岩力学特性的弹塑性本构模型。新模型的所有参数都具有明确的物理含义。通过理论曲线与试验结果进行对比,验证了所提本构模型的正确性。最后通过改变模型参数,对新本构模型的性能进行了分析讨论。计算结果表明:(1)增大超固结比发展控制参数m或者减小结构状态发展控制参数m*,将会提升软岩的剪切强度。(2)随着温度的上升,软岩的剪切强度反而减弱。(3)初始的超固结比越大,软岩的剪胀特性更明显;而初始的结构性较大时,其体积应变在剪切的最后阶段表现为剪缩。
        Many geotechnical problems, such as deep excavation of mine, underground storage of nuclear waste and pervasive application of energy piles, need to consider the effect of temperature on the mechanical properties of soft rock. In order to describe the mechanical properties of soft rock more comprehensively, based on the superloading and subloading concept and the concept of temperature-equivalent stress, a new elastoplastic constitutive model for soft rock, which is able to consider the effect of temperature,intermediate principal stress, structure and overconsolidation at the same time, is proposed in the tij stress space. All parameters of the new model have clear physical meaning. By comparing theoretical curves with the experimental results, the correctness of the proposed constitutive model is verified. Finally, by changing the model parameters, the performance of the new constitutive model is analyzed and discussed. Increasing the value of m which controls development of overconsolidation ratio or reducing the value of m*that controls structural state development will enhance the shear strength of soft rock. With the increase of temperature, the shear strength of soft rock declines. The higher the initial overconsolidation ratio is, the more apparent the dilatancy of soft rock becomes.But when initial structure is large, the volume strain of soft rock presents shear contraction in the final shear stage.
引文
[1]徐增辉,刘光廷,叶源新,等.温度对软岩渗透系数影响的试验研究[J].三峡大学学报(自然科学版),2006,28(6):301-304.XU Zeng-hui,LIU Guang-ting,YE Yuan-xin,et al.Research on effect of temperature on permeability of soft rock[J].Journal of China Three Gorges University(Natural Science),2006,28(6):301-304.
    [2]吴精科,阚甲广,谢生荣,等.深井高应力软岩沿空留巷围岩破坏机制及控制[J].岩土力学,2017,38(3):793-800.WU Jing-ke,KAN Jia-guang,XIE Sheng-rong,et al.Failure mechanisms and control of surrounding rock of deep gob-side entry retaining in soft rock strata under high stress[J].Rock and Soil Mechanics,2017,38(3):793-800.
    [3]孟庆彬,韩立军,张帆舸,等.深部高应力软岩巷道耦合支护效应研究及应用[J].岩土力学,2017,38(5):1424-1435.MENG Qing-bin,HAN Li-jun,ZHANG Fan-ge,et al.Coupling support effect on high-stress deep soft rock roadway and its application[J].Rock and Soil Mechanics,2017,38(5):1424-1435.
    [4]陈卫忠,马永尚,于洪丹,等.泥岩核废料处置库温度-渗流-应力耦合参数敏感性分析[J].岩土力学,2018,39(2):1-10.CHEN Wei-zhong,MA Yong-shang,YU Hong-dan,et al.Parameter sensitivity analysis for thermo-hydromechanical coupling model of clay tunnel for radioactive waste disposal[J].Rock and Soil Mechanics,2018,39(2):1-10.
    [5]马永尚,陈卫忠,龚哲,等.泥岩各向异性热-水-力耦合特性--基于ATLAS III现场加热试验[J].岩土力学,2018,39(2):426-436.MA Yong-shang,CHEN Wei-zhong,GONG Ze,et al.Coupled thermo-hydro-mechanical anisotropy characteristics of clay-based on the ATLAS III in situ heating test[J].Rock and Soil Mechanics,2018,39(2):426-436.
    [6]查文华,宋新龙,武腾飞.不同温度条件下煤系砂质泥岩力学特征试验研究[J].岩石力学与工程学报,2014,33(4):809-816.ZHA Wen-hua,SONG Xin-long,WU Teng-fei.Experimental study of mechanical characteristics of coal-serial sandy mudstone at different temperatures[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(4):809-816.
    [7]查文华,宋新龙,武腾飞,等.温度对煤系泥岩力学特征影响的试验研究[J].岩土力学,2014,35(5):1334-1339.ZHA Wen-hua,SONG Xin-long,WU Teng-fei,et al.Experimental study of mechanical characteristics of coal-serial mudstone under different temperatures[J].Rock and Soil Mechanics,2014,35(5):1334-1339.
    [8]杨更社,奚家米,李慧军,等.煤矿立井井筒冻结壁软岩力学特性试验研究[J].地下空间与工程学报,2012,8(4):690-697.YANG Geng-she,XI Jia-mi,LI Hui-jun,et al.Experimental study on soft rock mechanical characteristics of freezing wall in mine shaft[J].Chinese Journal of Underground Space and Engineering,2012,8(4):690-697.
    [9]王东,康天合,柴肇云,等.电化学作用对蒙脱石软岩颗粒物沉降与体积膨胀性影响的试验研究[J].岩石力学与工程学报,2009,28(9):1876-1883.WANG Dong,KANG Tian-he,CAI Zhao-yun,et al.Experimental studies of subsidence and expandability of montmorillonitic soft rock particles under electrochemical treatment[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1876-1883.
    [10]张锋.计算土力学[M].北京:人民交通出版社,2007.ZAHNG Feng.Computational soil mechanics[M].Beijing:China Communications Press,2007.
    [11]ZHANG F.Constitutive models for geologic materials and their application to excavation problem[D].Kyoto:Kyoto University,1994.
    [12]HASHIGUCHI K.Constitutive equations of soils based on the subloading surface concept[J].Journal of the Faculty of Agriculture Kyushu University,1994,39(1-2):91-103.
    [13]ZHANG S,LENG W M,ZHANG F,et al.A simple thermo-elastoplastic model for geomaterials[J].International Journal of Plasticity,2012,34:93-113.
    [14]张升,贺佐跃,滕继东,等.考虑结构性的软岩热弹塑性本构模型研究[J].岩石力学与工程学报,2017,36(3):571-578.ZHANG Sheng,HE Zuo-yue,TENG Ji-dong,et al.Athermo-elasto-plastic model for soft rocks considering structure[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(3):571-578.
    [15]ZHU H H,YE B,CAI Y C,et al.An elasto-viscoplastic model for soft rock around tunnels considering overconsolidation and structure effects[J].Computers and Geotechnics,2013,50:6-16.
    [16]熊勇林,朱合华,张升,等.考虑围压效应的修正软岩热弹黏塑性本构模型[J].岩石力学与工程学报,2016,35(2):225-230.XIONG Yong-lin,ZHU He-hua,ZHANG Sheng,et al.Amodified thermo-elasto-viscoplastic constitutive model for soft rock considering the effect of confining stress[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(2):225-230.
    [17]MASTUOKA H,NAKAI T.Stress deformation and strength characteristics of soil under three different principal stresses[J].Proceedings of the Japan Society of Civil Engineers,1974,232:59-70.
    [18]NAKAI T,MASTUOK H.A generalized elastoplastic constitutive model for clay in a three-dimensional stresses[J].Soils and Foundations,1986,26(3):81-89.
    [19]YE G L,ZHANG F,YASHIMA A,et al.Influence of membrane and filter paper on plane-strain testing of soft sedimentary rock[J].Geotechnical Testing Journal,2007,30(6):442-453.
    [20]ASAOKA A,NAKANO M,NODA T.Super loading yield surface concept for the saturated structured soils[C]//Proceedings of the Fourth European Conference on Numerical Methods in Geotechnical Engineering NUMGE98.Udine:Springer,1998.
    [21]NISHIKAMI H,HORII H.Plane strain compression test of cemented sand and measurement of strain localization[C]//Proceedings of the 28th Annual Conference of Japanese Geotechnical Society.Nagoya:[s.n.],1993.
    [22]NISHIMURA T.Experimental research and modelling of thermo-creep behavior of sedimentary soft rock and its application to BVP[D].Nagoya:[s.n.],2013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700