一步法制备铁氧化物/氮改性氧化石墨/碳纳米管异质结及其用于催化活化过一硫酸氢钾降解亚甲基蓝模型染料(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:One-step preparation of Fe_xO_y/N-GN/CNTs heterojunctions as a peroxymonosulfate activator for relatively highly-efficient methylene blue degradation
  • 作者:赵鑫 ; 安庆大 ; 肖作毅 ; 翟尚儒 ; 施展
  • 英文作者:Xin Zhao;Qing-Da An;Zuo-Yi Xiao;Shang-Ru Zhai;Zhan Shi;Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University;State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University;
  • 关键词:异质结 ; 有机污染物降解 ; 氮掺杂石墨烯 ; 协同作用
  • 英文关键词:Heterojunctions;;Organic pollutant degradation;;Nitrogen-doped graphene;;Synergistic collaboration
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:大连工业大学轻工与化学工程学院;吉林大学化学学院无机合成和制备化学国家重点实验室;
  • 出版日期:2018-09-05
  • 出版单位:催化学报
  • 年:2018
  • 期:v.39
  • 基金:supported by the National Natural Science Foundation of China(21676039);; Innovative talents in Liaoning universities and colleges(LR2017045);; the Opening Foundation of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry of Jilin University(2016–04)~~
  • 语种:英文;
  • 页:CHUA201811015
  • 页数:14
  • CN:11
  • ISSN:21-1601/O6
  • 分类号:128-139+210-211
摘要
随着较差的生物相容性和更高毒性有机染料的应用,如酚类化合物和抗生素,水污染和食品污染变得极其严重.这不仅危害人类健康,而且严重污染自然环境.过硫酸盐去污技术利用自由基活化降解过程,成为处理一系列污染物非常有效的方法;然而设计具有多功能性的高性能催化剂仍然面临着巨大的挑战.因此,本文借鉴铁基材料、氮改性石墨和碳纳米管独特的物化性质,以尿素、铁盐、氧化石墨、碳纳米管为原材料,通过一步水热法成功制备了三维多功能铁氧化物/氮改性氧化石墨/碳纳米管异质结,用作活化过一硫酸氢钾复合盐以降解有机模型污染物亚甲基甲蓝(MB),研究了高级氧化法(AOPs)作用机理和优化反应条件.XRD、红外光谱、SEM和XPS结果表明,铁氧化物通过物理静电作用力和化学键结合力已经被牢牢固定在了氮修饰的氧化石墨结构框架内.当加入了碳纳米管之后,它会与石墨形成类似于互穿聚合物网络的结构,从而具有三维材料的优点,且提升电子转移电导率,使得催化剂的结构和性能有了很大的改善.此外,优化了降解系统、PMS负载量、初始有机污染物浓度和催化剂用量等因素.结果表明,处于催化剂/PMS系统时,亚甲基蓝可以在12min之内有效地完全降解,可归结于碳、氮以及主要活性物质铁氧化物之间的协同作用.基于数据拟合分析,污染物氧化降解系统与拟一阶动力学相符合,其速率常数约为0.33 min~(-1).淬灭实验证明,硫酸根自由基和羟基自由基是主要的反应活性物种.这种同时富含铁/氮分级的多孔碳骨架异质结物质不仅可用作过渡金属催化剂,而且为制备其他异质结提供参考,以用于超级电容器、储能材料、电催化剂等领域
        Persulfate decontamination technologies utilizing radical-driven processes are powerful tools for the treatment of a broad range of impurities. However, the design of high-performance catalytic activators with multi-functionality remains a great challenge. Therefore, in this study,three-dimensional multifunctional FexOy/N-GN/CNTs(N-GN: nitrogen-doped graphene, CNTs: carbon nanotubes) heterojunctions, which can be employed as microwave absorbers and catalysts,were synthesized via a solvothermal method and applied to activate peroxymonosulfate for the degradation of methylene blue(MB). X-ray diffraction(XRD), Fourier transform infrared spectrometer(FTIR),scanning electron microscope(SEM), and X-ray photoelectron microscopy(XPS) analyses revealed that the FexOy were anchored in-situ onto the N-GN network. Using MB as the model organic dye, various factors, such as degradation systems, PMS loading, initial organic pollutant concentration, and catalyst dosage were optimized. The results revealed that the remarkable efficiency was attributable to the synergistic effects of carbon, nitrogen, and iron-based species. The oxidation system corresponded to the pseudo-first-order kinetic with a k value of ~0.33 min~(-1). It was demonstrated that both SO_4~(·-) and OH~· were the predominant reactive species through quenching experiments. Because these heterojunctions were employed as microwave absorbers and have a semiconductor-like texture, the Fe/N co-rich hierarchical porous carbon skeleton favored electron transport and storage. These heterojunctions increase the options for transitional metal catalysts and highlights the importance of designing other heterojunctions for specific applications, such as supercapacitors, energy storage, CO_2 capture, and oxygen reduction electrocatalysts.
引文
[1]Y.R.Fang,Y.B.Guo,Chin.J.Catal.,2018,39,566-582.
    [2]Y.Lu,S.Song,R.Wang,Z.Liu,J.Meng,A.J.Sweetman,A.Jenkins,R.Ferier,H.Li,W.Luo,T.Wang,Environ.Int.,2015,77,5-15.
    [3]T.S.Natarajan,M.Thomas,K.Natarajan,H.C.Bajaj,R.J.Tayade,Chem.Eng.J.,2011,169,126-134.
    [4]S.K.Ling,S.B.Wang,Y.L.Peng,J.Hazard.Mater.,2010,178,385-389.
    [5]Z.L.Wang,T.P.Hu,K.Dai,J.F.Zhang,C.H.Liang,Chin.J.Catal.,2017,38,2021-2029.
    [6]L.L.Ling,L.F.Liu,Y.W.Feng,J.Zhu,Z.F.Bian,Chin.J.Catal.,2018,39,639-645.
    [7]W.J.Liu,L.Liu,C.Liu.H.Yan,H.Yang,B.Yuan,J.H.Jiang,Biochem.Eng.J.,2016,110,115-124.
    [8]Y.P.Sun,K.F.Fu,Y.Lin,W.J.Huang,Acc.Chem.Res.,2002,35,1096-1104.
    [9]X.X.Zhou,Y.J.Li,J.F.Liu,ACS.Sustain.Chem.Eng.,2017,5,5468-5476.
    [10]J.Liang,L.Li,J.Mater.Chem.A,2017,5,10998-11008.
    [11]M.Zhang,K.P.Annamalai,L.L.Liu,T.L.Chen,J.P.Gao,Y.S.Tao,RSC.Adv.,2017,7,20724-20731.
    [12]Y.B.Ding,L.H.Zhu,N.Wang,H.Q.Tang,Appl.Catal.,B,2013,129,153-162.
    [13]J.Deng,Y.S.Shao,N.Y.Gao,S.Xia,C.Tan,S.Zhou,X.Hu,Chem.Eng.J.,2013,222,150-158.
    [14]S.N.Su,W.L.Guo,C.L.Yi,Y.Leng,Z.Ma,Ultrason.Sonochem.,2012,19,469-474.
    [15]X.Y.Luo,L.X.Wu,Y.G.Guo,C.C.Chen,Z.H.Wang,D.X.Xiao,C.L.Fang,J.S.Liu,J.C.Zhao,S.Y.Lu,Chemosphere.,2014,117,582-585.
    [16]Y.H.Guan,J.Ma,X.C.Li,J.Y.Fang,L.W.Chen,Environ.Sci.Technol.,2011,45,9308-9314.
    [17]K.H.Chan,W.Chu,Water Res.,2009,43,2513-2521.
    [18]Q.Liao,J.Sun,L.Gao,Colloids Surf.A,2009,345,95-100.
    [19]X.J.Yang,X.M.Xu,J.Xu,Y.F.Han,J.Am.Chem.Soc.,2013,13,16058-16061.
    [20]J.J.Pignatello,E.Oliveros,A.MacKay,Crit.Rev.Environ.Sci.Technol.,2006,1-84.
    [21]A.Cabrera.Reina,J.L.García Sánchez,J.L.Casas López,M.I.Maldonado Rubio,G.Li Pumad,J.A.Sánchez Pérezab,L.Santos‐Juanes,J.L.Garcia.Sánchez,J.L.Casas,M.I.Malaonado,Rubio,G.Li Puma,J.A.Sánchez Pérez,Appl.Catal.B,2015,166,295-301.
    [22]P.D.Hu,M.C.Long,X.Bai,C.Wang,C.Y.Cai,J.J.Fu,B.X.Zhou,Y.F.Zhou,J.Hazard.Mater.,2017,332,195-204.
    [23]S.Sen Gupta,M.Stadler,C.A.Noser,A.Chosh,B.Steinhoff,D.Lenoir,C.P.Hor‐witz,K.W.Schramm,T.J.Collins,Science,2002,296,326-328.
    [24]G.Lente,J.H.Espenson,Green Chem.,2005,7,28-34.
    [25]S.P.Mezyk,K.A.Rickman,G.Mckay,C.M.Hirsch,X.He,D.D.Dionysios,ACS Symp.Ser.,2011,1071,247-263.
    [26]F.Gong,L.Wang,D.W.Li,F.Y.Zhou,Y.Y.Yao,W.Y.Lu,S.Q.Huang,W.X.Chen,Chem.Eng.J.,2015,267,102-111.
    [27]P.Hu,M.Long,Appl.Catal.B,2016,181,103-117.
    [28]K.Y.A.Lin,Y.C.Chen,Y.F.Lin,Chem.Eng.Sci.,2017,160,96-105.
    [29]C.Q.Tan,N.Y.Gao,D.F.Fu,J.Deng,L.Deng,Sep.Purif.Technol.,2017,175,47-57.
    [30]R.L.Liu,Y.Q.Jin,P.M.Xu,X.Xing,Y.Yang,D.Wu,J.Colloid Interface Sci.,2016,464,83-88.
    [31]A.Sarapuu,L.Samolberg,K.Kreek,M.Koel,L.Matisen,K.Tammeveski,J.Electroanal.Chem.,2015,746,9-17.
    [32]J.Bedia,V.M.Monsalvo,J.J.Rodriguez,A.F.Mohedano,Chem.Eng.J.,2016,318,224-330.
    [33]Z.F.Huang,Y.Y.Yao,J.T.Lu,C.H.Chen,W.Y.Lu,S.Q.Huang,W.X.Chen,J.Hazard.Mater.,2015,301,214-221.
    [34]P.Shukla,H.Q.Sun,S.B.Wang,H.M.Ang,M.O.Tadé,Sep.Purif.Technol.,2011,77,230-236.
    [35]P.Shukla,H.Q.Sun,S.B.Wang,H.M.Ang,M.O.Tade,Catal.Today,2011,175,380-385.
    [36]L.X.Hu,F.Yang,W.C.Lu,Y.Hao,H.Yuan,Appl.Catal.B,2013,134,7-18.
    [37]C.Santhosh,E.Daneshvar,P.Kollu,S.Per鋘iemi,A.N.Grace,A.Bhatnagar,Chem.Eng.J.,2017,322,472-487.
    [38]S.Karthikeyan,M.P.Pachamuthu,M.A.Isaacs,S.Kumar,A.F.Lee,G.Sekaran,Appl.Catal.B,2016,199,323-330.
    [39]F.Ji,C.L.Li,X.Y.Wei,J.Yu,Chem.Eng.J.,2013,231,434-440.
    [40]C.Q.Li,P.Sun,H.Y.Yu,N,Zhang,J.Wang,Chen,RSC Adv.,2017,7,1869-1876.
    [41]S.Zhong,G.Lu,X.Gong,Chin.J.Catal.,2018,38,1138-1145.
    [42]H.Q.Sun,S.Z.Liu,G.L.Zhou,H.M.Ang,M.O.Tade,S.B.Wang?ACS.Appl.Mater.Interfaces,2015,4,5466-5471.
    [43]Y.Wang,Y.Shao,D.W.Matson,J.Li,Y.Lin,ACS Nano,2010,4,1790-1798.
    [44]L.Zhang,Z.Xia,J.Phys.Chem.C,2011,115,11170-11176.
    [45]H.M.Jeong,J.W.Lee,W.H.Shin,Y.J.Choi,H.J.Shin,J.K.Kang,J.W.Choi,Nano Lett.,2011,11,2472-2477.
    [46]N.Zhou,Q.D.An,Z.Y.Xiao,S.R.Zhai,Z.Shi,RSC Adv.,2017,7,45156-45169.
    [47]Y.Liang,D.Wu,X.Feng,K.Miillen,Adv.Mater.,2009,21,1679-1683.
    [48]K.Yang,H.Peng,Y.Wen,N.Li,Appl.Surf.Sci.,2010,256,3093-3097.
    [49]M.P.Zhu,Z.Kaibin,X.D.Sun,Z.X.Zhao,Z.F.Tong,Z.X.Zhao,Chem.Eng.J.,2017,317,660-672.
    [50]X.X.Zhou,Y.J.Li,J.F.Liu,ACS Sustain.Chem.Eng.,2017,5,5468-5476.
    [51]Y.W.Zhu,S.Murali,W.W.Cai,Adv.Mater.,2010,22,3906-3924.
    [52]J.J.Tang,J.Yang,X.Y.Zhou,H.M.Yao,L.M.Zhou,J.Mater.Chem.A,2015,3,23844.23851.
    [53]M.Chen,X.W.Yin,M.Li,L.Q.Chen,L.F.Cheng,L.T.Zhang,Ceram.Int.,2015,41,2467.2475.
    [54]W.S.Zhong,Y.B.Shu,Y.Sun,K.Parvez,X.L.Feng,Klaus,J.Am.Chem.Soc.,2012,134,9082-9085.
    [55]N.S.Mcintyre,D.G.Zetaruk,Anal.Chem.,1977,49,1521-1529.
    [56]T.Yamashita,P.Hayes,Appl.Surf.Sci.,2008,254,2441-2449.
    [57]X.B.Wang,L.Y.Qin,H.L.Zhu,Q.H.Tang,Environ.Sci.Technol.,2015,49,6855-6864.
    [58]X.B.Wang,P.Tang,C.Ding,Y.X.Cao,D.S.Yuan,H.X.Zuo,G.X.Deng,J.Environ.Chem.Eng.,2017,5,3407-3415
    [59]C.Chun,H.Zhang,X.Zhong,L.W.Hou,J.Hazard.Mater.,2015,283,70-79.
    [60]X.F.Zhao,C.G.Niu,L.Zhang,H.Guo,X.J.Wen,C.Liang,G.M.Zeng,Chemosphere,2018,204,11-21.
    [61]Y.B.Ding,H.B.Tang,S.H.Zhang,S.B.Wang,H.Q.Tang,J.Hazard.Mater.,2016,317,686-694.
    [62]C.Gong,F.Chen,Q.Yang,K.Luo,F.B.Yao,S.N.Wang,X.L.Wang,J.W.Wu,X.M.Li,D.B.Wang,G.M.Zeng,Chem.Eng.J.,2017,321,222-232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700