楞古水电站碎裂岩质边坡变形破坏模式研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DEFORMATION FAILURE MODE OF FRACTURED ROCK MASS SLOPE IN LENGGU HYDROPOWER STATION
  • 作者:张御阳 ; 黄润秋 ; 裴向军 ; 魏玉峰 ; 王梓龙 ; 王刚 ; 肖华波
  • 英文作者:ZHANG Yuyang;HUANG Runqiu;PEI Xiangjun;WEI Yufeng;WANG Zilong;WANG Gang;XIAO Huabo;State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology;PowerChina Chengdu Engineering Corporation Limited;
  • 关键词:碎裂岩体 ; 坡体结构 ; 边界条件 ; 变形破坏模式 ; 离散元
  • 英文关键词:Fractured rock mass;;Slope structures;;Boundary conditions;;Pattern of deformation and failure;;Discrete element method
  • 中文刊名:GCDZ
  • 英文刊名:Journal of Engineering Geology
  • 机构:地质灾害防治与地质环境保护国家重点实验室(成都理工大学);中国电建集团成都勘测设计研究院有限公司;
  • 出版日期:2017-04-15
  • 出版单位:工程地质学报
  • 年:2017
  • 期:v.25;No.118
  • 基金:国家自然科学基金(41572302);; 四川省国土资源厅科学研究计划(KJ-2015-18)资助
  • 语种:中文;
  • 页:GCDZ201702036
  • 页数:9
  • CN:02
  • ISSN:11-3249/P
  • 分类号:302-310
摘要
碎裂结构岩质边坡是地质工程中遇到的一种最不稳定边坡,其原岩松弛,结构面普遍张开,围岩自稳能力差,碎裂结构岩体出露不连续,空间分布存在差异,导致边坡破坏边界不明显,变形破坏机制很难确定。本文以雅砻江楞古水电站碎裂结构岩质边坡为例,在地质环境调查和平硐勘测的基础上,系统研究了碎裂岩体结构特征,分析了控制边坡变形破坏的边界条件和变形破坏模式,并运用UDEC离散元程序模拟验证。研究结果表明:碎裂岩质边坡的变形破坏主要受自身结构及内部相对长大结构面控制,变形演化过程依循应力调整、时效变形和局部失稳3个阶段,变形破坏模式分为断层主控底滑型和裂隙切割破坏型。目前针对碎裂结构岩质边坡研究相对较少,缺乏大型工程实例支撑,该研究成果为水利工程中这类边坡的研究提供了参考。
        Fractured rock mass slope is one of the most unstable slopes in geological engineering. It has flabby original rock structures,generally open structural planes and poor stability surrounding rocks. The fractured rock mass is exposed discontinuity and the spatial distribution is different. These characteristics lead to the boundary of slope failure is not obvious. It causes deformation and failure mechanism difficult to be determined. As an example of the fractured rock slope of the Lenggu Hydropower Station in the Yalong River,based on geological environment investigation and survey of adit,this paper systematically studies the fractured rock mass structure characteristics,analyzes the boundary conditions which controls the slope deformation and failure,and summarizes the slope deformation and failure modes. Moreover,the UDEC discrete element simulation is used to verify the modes. The results show that the deformation and failure of the rock slope is mainly controlled by rock slope structures andinternal relative large structures. The deformation evolution process is divided into three stages: stress adjustment,aging deformation and local instability. The deformation failure modes include fault controlled bottom slip mode and fracture cutting failure mode. At present,there are few relatively studies on the fractured rock slope,lack of largescale engineering case support. The research results provide reference for the study of this kind of slope in water conservancy project.
引文
Cao X S.2002.Research on instability mechanism and controlling techniques for cutting high slope in disintegration rock mass[D].Chengdu:Southwest Jiaotong University.
    Duan H P,Zhao J J,Ju N P.2008.Cataclastic rock slope deformation process and deformation mechanism analysis[J].Subgrade Engineering,(4):170~172.
    Gu D Z.1979.Engineering geological mechanics of rock mass foundation[M].Beijing:Science Press.
    Huang R Q,Xu M,Chen J P.2004.Complex fine description of rock mass structure and its engineering application[M].Beijing:Science Press.
    Huang R Q,Yin Y P,Wu F Q.2012.The rock stability of high slope engineering geology analysis[M].Beijing:Science Press.
    Li J R.2013 Studies on formation mechanism of slope cataclastic rock and slope rock mass quality classification in Rumei Hydropower station[D].Yichang:China Three Gorges University.
    Li Y J,Pan Y S,Li Z H.2006.Analysis of mechanism of zonal disintegration of rocks[J].Chinese Journal of Geotechnical Engineering,28(9):1124~1128.
    Li J L,Wang L H,Liu J et al.,2006.Rock slope engineering[M].Beijing:China Water Donservancy and Hydropower Press.
    Qi N.2006.Cataclastic rock mass high slope stability evaluation and prevention measures[D].Xi'an:Chang'an University.
    Xie Y.2011.Equivalent research on engineering characteristics of cataclastic rockmass and its engineering application[D].Chengdu:Chengdu University of Technology.
    Yu B,Chen Z H.2014.The weathered cataclastic rock characteristics bank slope and its influence in the lancang river valley of Tibet[C]∥Guizhou Province in Rock Mechanics and Engineering Society2014 Annual Academic Exchanges.Zunyi:Guizhou Society for Rock Mechanics and Engineering:3~9.
    Zhou D P,Zhong W,Yang T.2008.Stability analysis of rocky slope based on slope structures[J].Chinese Journal of Rock Mechanics and Engineering,27(4):687~695.
    Zhao W H,Huang R Q,Zhao J J.2011.Rockfall mechanism of cataclastic rock mass and influence of back wall upon the stability o accumulation under strong earthquake[J].Journal of Engineerin Geology,19(2):205~212.
    Zhu Z G.2012.Mechanism and controlling techniques of landslide in cataclastic rockmass of Shuangda Road in Beijing[D].Beijing:China University of Geosciences(Beijing).
    Zhang Z Y,Wang S T,Wang L S.2005.Engineering geology analysi principle[M].Beijing:Geological Publishing House.
    曹兴松.2002.碎裂岩体路堑高边坡失稳机理及防治技术研究[D]成都:西南交通大学.
    段海澎,赵建军,巨能攀.2008.碎裂结构岩质边坡变形过程及变形机制分析[J].路基工程,(4):170~172.
    谷德振.1979.岩体工程地质力学基础[M].北京:科学出版社.
    黄润秋,许模,陈剑平.2004.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社.
    黄润秋,殷跃平,伍法权.2012.岩石高边坡稳定性工程地质分析[M].北京:科学出版社.
    李建荣.2013.如美水电站边坡碎裂岩体成因机理及边坡岩体质量分级研究[D].宜昌:三峡大学.
    李英杰,潘一山,李忠华.2006.岩体产生分区碎裂化现象机理分析[J].岩土工程学报.28(9):1124~1128.
    李建林,王乐华,刘杰,等.2006.岩石边坡工程[M].北京:中国水利水电出版社.
    祁宁.2006.碎裂岩体高边坡稳定性评价与防治措施研究[D].西安:长安大学.
    谢晔.2011.碎裂岩体工程特性的等效研究及工程应用[D].成都:成都理工大学.
    余波,陈占恒.2014.西藏澜沧江河谷岸坡风化碎裂岩体特征及影响[C].∥贵州省岩石力学与工程学会2014年度学术交流论文集.遵义:贵州省岩石力学与工程学会:3~9.
    周德培,钟卫,杨涛.2008.基于坡体结构的岩质边坡稳定性分析[J].岩石力学与工程学报,27(4):687~695.
    赵伟华,黄润秋,赵建军.2011.强震条件下碎裂岩体崩塌机理及崩塌后壁对堆积体稳定性影响研究[J].工程地质学报,19(2):205~212.
    朱志刚.2012.北京双大路碎裂岩质滑坡灾变机理及控制技术[D]北京:中国地质大学(北京).
    张倬元,王士天,王兰生.2005.工程地质分析原理[M].北京:地质出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700