骨架锌Zn-HZSM-5分子筛催化剂上甲醇制汽油反应动力学(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Reaction kinetics of methanol to gasoline over Zn-HZSM-5 catalysts with skeleton Zn
  • 作者:王晓龙 ; 吴成成 ; 肖天存 ; 王琪 ; 王有和 ; 季生福
  • 英文作者:Wang Xiaolong;Wu Chengcheng;Xiao Tiancun;Wang Qi;Wang Youhe;Ji Shengfu;Huaneng Clean Energy Research Institute;State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology;State Key Laboratory of Clean Coal-Based Energy;Beijing Key Laboratory of CO2Capture and Utilization;
  • 关键词:催化化学 ; Zn-HZSM-5分子筛催化剂 ; 骨架Zn ; 甲醇制汽油 ; 动力学 ; 三集总模型
  • 英文关键词:catalytic chemistry;;Zn-HZSM-5 zeolite catalyst;;skeleton Zn;;methanol to gasoline;;kinetics;;three-lumped model
  • 中文刊名:GYCH
  • 英文刊名:Industrial Catalysis
  • 机构:中国华能集团清洁能源技术研究院有限公司;北京化工大学化工资源有效利用国家重点实验室;煤基清洁能源国家重点实验室;二氧化碳捕集与处理北京市重点实验室;
  • 出版日期:2018-10-15
  • 出版单位:工业催化
  • 年:2018
  • 期:v.26;No.241
  • 基金:中国华能集团有限公司科技项目(TY-15-HJK02)
  • 语种:英文;
  • 页:GYCH201810016
  • 页数:10
  • CN:10
  • ISSN:61-1233/TQ
  • 分类号:110-119
摘要
通过水热晶化法,合成含有骨架杂原子Zn的Zn-HZSM-5分子筛催化剂,采用XRD、BET、NH3-TPD表征催化剂结构和物化性能,在微型固定床反应器中测定催化剂的甲醇制汽油反应性能和反应动力学数据,研究Zn-HZSM-5分子筛催化剂的甲醇制汽油本征反应动力学。结果表明,杂原子Zn引入ZSM-5分子筛骨架后增加对产物汽油选择性有利的弱酸量。采用Chen and Reagan建立的甲醇制汽油三集总动力学模型,通过四阶龙格库塔法和最小二乘法对实验数据的回归,计算反应速率常数为k_1=1. 154×10~(12)exp (-97600/RT),k_2=0. 687×10~(12)exp (-105200/RT)和k_3=1. 739×10~7exp (-84700/RT)。以目标残差函数OF参数值为检验模型的标准,模拟值和实验值的相关系数R~2均在0. 993以上。因此Chen and Reagan建立的甲醇制汽油三集总动力学模型可以准确描述Zn-HZSM-5分子筛催化剂的甲醇制汽油反应动力学行为。
        Zn-HZSM-5 zeolite catalysts containing skeleton heteroatom Zn were synthesized by in-situ hydrothermal crystallization method. Structure and physic-chemical properties of the catalyst were characterized by XRD,BET and NH3-TPD. The catalytic activity and intrinsic reaction kinetics for methanol to gasoline of Zn-HZSM-5 zeolite were measured in micro fixed bed reactor. Results showed that amount of weak acid beneficial for gasoline selectivity increased when heteroatom Zn was modified into ZSM-5 zeolite skeleton. Using the three-lumped kinetic model of methanol to gasoline established byChen and Reagan,the reaction rate constants were k_1= 1. 154 × 10~(12) exp(-97600/RT),k_2= 0. 687 × 10~(12) exp(-105200/RT) and k_3= 1. 739 × 10~7 exp(-84700/RT) respectively based on experimental data regression by Runge-Kutta method and the least-squares method. Taking the target residual function( OF) parameter value as criterion of test,the correlation coefficients R~2 of simulated value and experimental value were higher than 0. 993. Therefore,the methanol to gasoline three-lumped kinetic model established by Chen and Reagan could accurately describe the kinetics of methanol to gasoline reaction on Zn-HZSM-5 zeolite catalysts.
引文
[1]Xu X,Liu Y,Zhang F,et al. Clean coal technologies in China based on methanol platform[J]. Catalysis Today,2017,298:61-68.
    [2]Yang C J,Jackson R B. China’s growing methanol economy and its implications for energy and the environment[J].Energy Policy,2012,41:878-884.
    [3]Su LW,Li X R,Sun Z Y. The consumption,production and transportation of methanol in China:a review[J]. Energy Policy,2013,63:130-138.
    [4]Ramberg D J,Chen Y H H,Paltsey S,et al. The economic viability of gas-to-liquids technology and the crude oilnatural gas price relationship[J]. Energy Economics,2017,63:13-21.
    [5]Gui Q Z,Bai T,Teng F C,et al. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Industrial and Engineering Chemistry Research,2014,53(39):14932-14940.
    [6]Wei Z,Chen L,Cao Q,et al. Steamed Zn/ZSM-5 catalysts for improved methanol aromatization with high stability[J].Fuel Processing Technology,2017,162:66-77.
    [7]Feng H,Li C,Shan H. In-situ synthesis and catalytic activity of ZSM-5 zeolite[J]. Applied Clay Science,2009,42(3/4):439-445.
    [8]Ni Y,Sun A,Wu X,et al. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction[J]. Journal of Natural Gas Chemistry,2011,20(3):237-242.
    [9]Bi Y,Wang Y,Chen X,et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J].Chinese Journal of Catalysis,2014,35(10):1740-1751.
    [10]Ni Y,Sun A,Wu X,et al. The preparation of nano-sized H[Zn,Al] ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous and Mesoporous Materials,2011,143(2):435-442.
    [11]Keil F J. Methanol-to-hydrocarbon:process technology[J]. Microporous and Mesoporous Materials,1999,29:49-66.
    [12]Zhang W,Chu Y,Wei Y,et al. Influences of the confinement effect and acid strength of zeolite on the mechanisms of methanol-to-olefins conversion over H-ZSM-5:a theoretical study of alkenes-based cycle[J]. Microporous and Mesoporous Materials,2016,231:216-229.
    [13]Kumar P,Thybaut J W,Svelle S,et al. Single-event microkinetics for methanol to olefins on H-ZSM-5[J].Industrial and Engineering Chemistry Research,2013,52:1491-1507.
    [14]Ying L,Zhu J,Cheng Y,et al. Kinetic modeling of C2-C7olefins interconversion over ZSM-5 catalyst[J]. Journal of Industrial and Engineering Chemistry,2016,33:80-90.
    [15]Wen M,Ding J,Wang C,et al. High-performance SSfiber@HZSM-5 core-shell catalyst for methanol-topropylene:a kinetic and modeling study[J]. Microporous and Mesoporous Materials,2016,221:187-196.
    [16]Huang X,Li H,Xiao W D,et al. Insight into the side reactions in methanol-to-olefin process over HZSM-5:a kinetic study[J]. Chemical Engineering Journal,2016,299:263-275.
    [17]Benito PL,Gayubo A G,Aguayo A T,et al. Concentrationdependent kinetic model for catalyst deactivation in the MTG process[J]. Industrial and Engineering Chemistry Research,1996,35(1):81-89.
    [18]Aguayo A T,Mier D,Gayubo A G,et al. Kinetics of methanol transformation into hydrocarbons on a HZSM-5 zeolite catalyst at high temperature(400-550℃)[J]. Industrial and Engineering Chemistry Research,2010,49(24):12371-12378.
    [19]Wang S,Chen Y,Wei Z,et al. Polymethylbenzene or alkene cycle? Theoretical study on their contribution to the process of methanol to olefins over H-ZSM-5 zeolite[J]. The Journal of Physical Chemistry C,2015,119(51):28482-28498.
    [20]Soltanali S,Halladj R,Rashidi A,et al. The effect of HZSM-5catalyst particle size on kinetic models of methanol to gasoline conversion[J]. Chemical Engineering Research and Design,2016,106:33-42.
    [21]Chang C D,Lang W H,Smith R L. The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts:II. Pressure effects[J]. Journal of Catalysis,1979,56(2):169-173.
    [22]Soltanali S,Halladj R,Rashidi A,et al. The effect of HZSM-5catalyst particle size on gasoline selectivity in methanol to gasoline conversion process[J]. Powder Technology,2017,320:696-702.
    [23]Li J,Miao P,Li Z,et al. Hydrothermal synthesis of nanocrystalline H[Fe,Al]ZSM-5 zeolites for conversion of methanol to gasoline[J]. Energy Conversion and Management,2015,93:259-266.
    [24]Xia Y,Zhan W,Guo Y,et al. Fe-Beta zeolite for selective catalytic reduction of NOx,with NH3:influence of Fe content[J]. Chinese Journal of Catalysis,2016,37(12):2069-2078.
    [25]Bi Y,Wang Y,Chen X,et al. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J].Chinese Journal of Catalysis,2014,35(10):1740-1751.
    [26]Fattahi M,Behbahani R M,Hamoule T. Synthesis promotion and product distribution for HZSM-5 and modified Zn/HZSM-5 catalysts for MTG process[J]. Fuel,2016,181:248-258.
    [27]Jia Y,Wang J,Zhang K,et al. Nanocrystallite self-assembled hierar-chical ZSM-5 zeolite microsphere for methanol to aromatics[J]. Microporous and Mesoporous Materials,2017,247:103-115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700