Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process
  • 作者:Yuhong ; Zhao ; Bing ; Zhang ; Hua ; Hou ; Weipeng ; Chen ; Meng ; Wang
  • 英文作者:Yuhong Zhao;Bing Zhang;Hua Hou;Weipeng Chen;Meng Wang;College of Materials Science and Engineering,North University of China;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;
  • 英文关键词:Phase field method;;Directional solidification;;Interface morphology;;Multi-control factors
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:College of Materials Science and Engineering,North University of China;State Key Laboratory of Solidification Processing,Northwestern Polytechnical University;
  • 出版日期:2019-06-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:financially supported by the National Natural Science Foundation of China(NSFC)under grant Nos.51774254,51774253,U1610123,51574207,51574206;; the Science and Technology Major Project of Shanxi Province under grant No.MC2016-06
  • 语种:英文;
  • 页:CLKJ201906012
  • 页数:9
  • CN:06
  • ISSN:21-1315/TG
  • 分类号:90-98
摘要
In this study, the phase field method was used to study the multi-controlling factors of dendrite growth in directional solidification. The effects of temperature gradient, propelling velocity, thermal disturbance and growth orientation angle on the growth morphology of the dendritic growth in the solid/liquid interface were discussed. It is found that the redistribution of solute leads to multilevel cavity and multilevel fusion to form multistage solute segregation, and the increase of temperature gradient and propelling velocity can accelerate the dendrite growth of directional solidification, and also make the second dendrites more developed, which reduces the primary distance and the solute segregation. When the temperature gradient is large, the solid-liquid interface will move forward in a flat interface mode,and the thermal disturbance does not affect the steady state behavior of the directionally solidified dendrite tip. It only promotes the generation and growth of the second dendrites and forms the asymmetric dendrite. Meanwhile, it is found that the inclined dendrite is at a disadvantage in the competitive growth compared to the normal dendrite, and generally it will disappear. When the inclination angle is large, the initial primary dendrite may be eliminated by its secondary or third dendrite.
        In this study, the phase field method was used to study the multi-controlling factors of dendrite growth in directional solidification. The effects of temperature gradient, propelling velocity, thermal disturbance and growth orientation angle on the growth morphology of the dendritic growth in the solid/liquid interface were discussed. It is found that the redistribution of solute leads to multilevel cavity and multilevel fusion to form multistage solute segregation, and the increase of temperature gradient and propelling velocity can accelerate the dendrite growth of directional solidification, and also make the second dendrites more developed, which reduces the primary distance and the solute segregation. When the temperature gradient is large, the solid-liquid interface will move forward in a flat interface mode,and the thermal disturbance does not affect the steady state behavior of the directionally solidified dendrite tip. It only promotes the generation and growth of the second dendrites and forms the asymmetric dendrite. Meanwhile, it is found that the inclined dendrite is at a disadvantage in the competitive growth compared to the normal dendrite, and generally it will disappear. When the inclination angle is large, the initial primary dendrite may be eliminated by its secondary or third dendrite.
引文
[1] W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35(1964)345–352.
    [2] J.A. Warren, J.S. Langer, Phys. Rev. E 47(1993)2702–2712.
    [3] C.W. Guo, J.J. Li, Y. Ma, J.C. Wang, Acta. Phys. Sin-Ch. 64(2015)329–336(in Chinese).
    [4] R.Z. Xiao, C.S. Zhu, G.S. An, Z.P. Wang, J. Lanzhou. Univ. Technol. 40(2014)9–13(in Chinese).
    [5] H. Xing, L. Zhang, K. Song, Int. J. Heat. Mass. Trans. 104(2017)607–614.
    [6] H. Xing, K. Ankit, X. Dong, Int. J. Heat. Mass. Trans. 117(2018)1107–1114.
    [7] K.D. Noubary, M. Kellner, Comp. Mater. Sci. 138(2017)403–411.
    [8] D. Tourret, Y. Song, A.J. Clarke, A. Karma, Acta Mater. 122(2017)220–235.
    [9] H.W. Pan, Z.Q. Han, B.J. Liu, J. Mater. Sci. Technol. 32(2016)68–75.
    [10] G.W. Wang, J.J. Liang, Y.Z. Zhou, T. Jin, X.F. Sun, Z.Q. Hu, J. Mater. Sci. Technol.33(2017)499–506.
    [11] H. Hou, D.Y. Ju, Y.H. Zhao, J. Cheng, J. Mater. Sci. Technol. 20(2004)45–48.
    [12] B. Echebarria, A. Karma, S. Gurevich,Phys. Rev. E 81(2010), 021608.
    [13] J. Ghmadh, J.M. Debierre, J. Deschamps, M. Georgelin, A. Pocheau, Acta Mater.74(2014)255–267.
    [14] J. Li, Z. Wang, Y. Wang, J. Wang, Acta Mater. 74(2012)1478–1493.
    [15] D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, W. John, A. Karma, JOM 67(2015)1776–1785.
    [16] J. Pereda, F.L. Mota, L. Chen, B. Billia, D. Tourret, Y. Song, J.M. Debierre, R.Guerin, A. Karma, R. Trivedi, N. Bergeon,Phys. Rev. E 95(2017), 012803.
    [17] N. Bergeon, D. Tourret, L. Chen, J. Debierre, R. Guerin, A. Ramirez, B. Billia, A.Karma, R. Trivedi,Phys. Rev. Lett. 110(2013), 226102.
    [18] D. Tourret, J.M. Debierre, Y. Song, F. Mota, N. Bergeon, R. Guerin, R. Trivedi, B.Billia, A. Karma,Phys. Rev. E 92(2015), 042401.
    [19] M. Amoorezaei, S. Gurevich, N. Provatas, Acta Mater. 58(2010)6115–6124.
    [20] A. Pocheau, M. Georgelin, Epl. 76(2006)291.
    [21] A.J. Clarke, D. Tourret, Y. Song, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, K. Fezzaa, A.Karma, Acta Mater. 29(2017)203–216.
    [22] Y.S. Kang, Y.C. Jin, Y.H. Zhao, J. Iron. Steel. Res. Int. 24(2017)171–176.
    [23] Y.S. Kang, Y.H. Zhao, H. Hou, L.W. Chen,Acta. Phys. Sin-Ch. 65(2016), 188102.
    [24] C.J. Hou, Y.C. Jin, Y.H. Zhao, Chin. J. Nonferrous Met. 26(2016)60–65.
    [25] Y.H. Zhao, W.J. Liu, H. Hou, Chin. J. Nonferrous Met. 43(2014)841–845.
    [26] A. Semoroz, Y. Durandet, M. Rappaz, Acta Mater. 49(2001)529–541.
    [27] F. Gonzales, M. Rappaz, Metall. Mater. Trans. A 39(2008)2148–2160.
    [28] M. Ohno, K. Matsuura, Acta Mater. 58(2010)5749.
    [29] M. Ohno, K. Matsuura, Phys. Rev. E 79(2009)031603–031615.
    [30] A.A. Wheeler, W.J. Boettinger, G.B. Mcfadden, Phys. Rev. E 47(1993)1893.
    [31] A. Karma, W.J. Rappel, Phys. Rev. E 60(1999)3614–3625.
    [32] B. Echebarria, R. Folch, A. Karma, M. Plapp,Phys. Rev. E 70(2004), 061604.
    [33] Y. Xie, H.B. Dong, J.A. Dantzig, ISIJ Int. 54(2014)430–436.
    [34] J.C. Ramirez, C. Beckermann, A. Karma,Phys. Rev. E 69(2004), 051607.
    [35] J.A. Dantzig, P.D. Napoli, J. Friedli, Metall. Mater. 44(2013)5532–5543.
    [36] A.J. Melendez, C. Beckermann, J. Cryst. Growth 340(2012)175–180.
    [37] X.B. Wang, X. Lin, L.L. Wang, B.B. Bai, M. Wang, W.D. Huang,Acta Phys. Sin. 62(2013), 108103.
    [38] W. Kurz, D.J. Fisher, Fundamentals of Solidification, Switzerland, 2010, pp.1–243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700