FTIR光谱的海水入侵区水-岩(土)间氟迁移机理分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Study on the Mechanism of Fluorine Transformation between Water and Rock (Soil) in Seawater Intrusion Areas Based on FTIR Spectrum
  • 作者:贾翠萍 ; 陈桥 ; 魏久传 ; 王红梅 ; 施龙青 ; 宁方助 ; 刘松良 ; 杨梦圆 ; 薛鑫 ; 董方营 ; 贾志文 ; 季钰涵
  • 英文作者:JIA Cui-ping;CHEN Qiao;WEI Jiu-chuan;WANG Hong-mei;SHI Long-qing;NING Fang-zhu;LIU Song-liang;YANG Meng-yuan;XUE Xin;DONG Fang-ying;JIA Zhi-wen;JI Yu-han;Science College,China University of Petroleum (East China);Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Minerals,College of Earth Science and Engineering,Shandong University of Science and Technology;The Third Exploration Team of Shandong Coalfield Geologic Bureau;
  • 关键词:FTIR ; 海水入侵 ; 含水砂层 ; 氟迁移
  • 英文关键词:FTIR;;Seawater intrusion;;Water-bearing sand layer;;Fluorine transformation
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:中国石油大学(华东)理学院;山东省沉积成矿作用与沉积矿产重点实验室山东科技大学地球科学与工程学院;山东省煤田地质局第三勘探队;
  • 出版日期:2019-04-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(40901027,41572244);; 山东省自然科学基金项目(ZR2018MD012);; 山东省煤田地质局2017年科研专项基金项目[鲁煤地科字(2017)10];; 大学生创新创业计划项目(20171412,20171436)资助
  • 语种:中文;
  • 页:GUAN201904009
  • 页数:5
  • CN:04
  • ISSN:11-2200/O4
  • 分类号:46-50
摘要
滨海地区饮水型氟中毒和海水入侵十分普遍。海水入侵引起地下水性质的改变对岩(土)氟迁移具有潜在影响,但尚未有直接模拟实验证实,其氟迁移机理也不明确。用淡水和海(卤)水混合及配制溶液模拟海水入侵过程,对含水砂层沉积物进行静态水-岩(土)氟迁移模拟实验,对比分析沉积物FTIR特征,探讨海水入侵对岩(土)氟迁移影响规律及机理。结果表明,含水砂层沉积物氟迁移量大小顺序为:海水>1∶1淡海>淡水;卤水>1∶1淡卤>淡水,随海(卤)水混入程度增加,含水砂层沉积物岩(土)氟迁移能力增强。氟迁移能力随NaCl和NaHCO_3浓度增加而增加,随CaCl_2浓度增加而降低。对含水砂层沉积物傅里叶红外吸收光谱(FTIR)分析表明,随NaCl和NaHCO_3浓度增加, NaCl溶液中沉积物Si—O—Si键伸缩振动峰强度明显增强,氟磷灰石弯曲振动峰减弱, O—H键特征峰变化不明显,而NaHCO_3溶液中沉积物羟基磷灰石弯曲振动峰和Si—O—Si键伸缩振动峰强度变化不明显, O—H键特征峰强度变化明显,表明NaHCO_3溶液主要通过OH~-与F~-离子交换,而NaCl溶液是通过Si—O—Si键中Si—O置换来影响岩(土)氟迁移。随CaCl_2浓度增加, Si—O—Si键伸缩振动峰强度明显减弱,氟磷灰石弯曲振动峰强度增强,表明Ca~(2+)强烈地抑制岩(土)氟析出。同时,随NaCl和NaHCO_3浓度增加和CaCl_2浓度减少, Si—F特征峰强度减弱, Si—O—Si键弯曲振动峰向低波数偏移。由于大气CO_2混入, 1 mol·L~(-1) CaCl_2作用沉积物出现1 460和1 420 cm~(-1)碳酸根特征峰。由于碳酸根沉积作用, 1 mol·L~(-1)的NaHCO_3作用的沉积物在1 460 cm~(-1)处峰强度增强,且在875 cm~(-1)出现新峰,但是在淡海卤水和NaCl溶液作用的沉积物中无碳酸根特征峰,表明含水砂层中无萤石(CaF_2)溶解作用。海水入侵引起的偏碱性、高钠低钙的环境促进岩(土)氟迁移释放,是滨海地区高氟地下水重要动力。
        Drinking-water fluorosis and seawater intrusion are common phenomena along coastal zones. The groundwater property variation evoked by seawater intrusion has the potential effect on fluorine transformation of rock(soil), but it lacks the direct simulation experiments, and the mechanism of fluorine transformation is still unclear. The static simulation experiments of fluorine transformation of sediments in the aquifers were performed by simulating the seawater intrusion process with the mixture of fresh water, seawater, brine water and laboratory solutions, and the FTIR spectrum of sediments was compared. By this way, the laws and mechanism of the effect of seawater intrusion on rock(soil) fluorine transformation are expected to be detected. The results are gained as follows: the orders of the fluorine transformation ability are: seawater>1∶1 fresh water and seawater>fresh water, and brine water>1∶1 fresh water and brine water>fresh water. The more fluorine in rock(soil) transforms with the more mixture of seawater or brine water. The sediments show higher ability of fluorine transformation with the higher levels of NaCl and NaHCO_3, and with the lower levels of CaCl_2. The intensity of Si—O—Si stretching vibration peak increases, that of bending vibration of fluorapatite decreases, and that of O—H adsorption peak doesn't change with the higher levels of NaCl, but the opposite case occurs with the higher levels of NaHCO_3, which indicates the fluorine migration mainly by the OH~--F~- exchange in NaHCO_3 solution and instead by Si substitution of Si—O—Si bond in NaCl solution. The intensity of Si—O—Si stretching vibration peaks is weakened and that of fluorapatite bending vibration increases with the higher levels of CaCl_2, indicating that Ca~(2+) can restrain the rock(soil) fluorine transformation. Meanwhile, the intensity of Si-F bending variation peak decreases and Si—O bending variation peak moves towards the low wavenumber with the increase of NaCl and NaHCO_3 concentrations and the decrease of CaCl_2 concentration. The 1 460 and 1 420 cm~(-1) CO■ absorption peaks occur when the sediment interacts with 1 mol·L~(-1) CaCl_2 because of the CO_2 mixture. The sediment has the higher intensity of 1 460 cm~(-1) absorption peak and the new 875 cm~(-1) absorption peak when interacting with 1 mol·L~(-1) NaHCO_3. But the sediment has no CO■ absorption peaks when interacting with seawater, brine water and NaCl solution. These facts indicates no fluorite(CaF_2) dissolution. Thus, the alkaline, high Na~+ and low Ca~(2+) conditions due to seawater intrusion lead to the high fluorine-leaching ability of rock(soil), which should be the important dynamics of high-fluorine groundwater along coastal zones.
引文
[1] LIU Jin-hua, WANG Yu-jun, YANG Jing-min, et al(刘金华, 王玉军, 杨靖民, 等). Soil(土壤), 2017, 49(3): 558.
    [2] Chen Qiao, Song Zhaojun, Lu Qingshui, et al. Toxicological and Environmental Chemistry, 2012, 94(8): 1490.
    [3] YU Li-ping, SUN Jing, CHEN A-li, et al(于丽萍, 孙静, 陈阿丽, 等). Journal of Ningxia Medical University(宁夏医科大学学报), 2017, 39(3): 290.
    [4] Wang Lifang, Chen Qiao, Long Xiaoping, et al. Water Science and Technology: Water Supply, 2015, 15(2): 384.
    [5] Ma Fengshan, Wei Aihua, Deng Qinghai, et al. Journal of Earth Science, 2014, 25(6): 1067.
    [6] Dou you, Howard Ken, Yang Liwei, et al. Exposure and Health, 2016, 8(3): 419.
    [7] Xiao Yanfei, Liu Xiangsheng, Feng Zongyu, et al. Journal of Rare Earths, 2015, 33(5): 545.
    [8] Chen Qiao, Lu Qingshui, Song Zhaojun, et al. Environmental Earth Sciences, 2014, 71: 4513.
    [9] Liu Yizhang, Xiao Tangfu, Ning Zengping, et al. Applied Geochemistry, 2013, 37: 149.
    [10] Yu Hao, Huang Xin, Ning Jianguo, et al. Soil and Foundations, 2014, 54(6): 1236.
    [11] Li Haobo, Lü Yanxin, Wang Gang, et al. Disaster Advances, 2013, 6(2): 302.
    [12] CHEN Lin, TANG Hong, LI Xiong-yao, et al(陈林, 唐红, 李雄耀, 等). Advances in Earth Science(地球科学进展), 2016, 31(4): 403.
    [13] ZHANG Qin-hu, CHEN Nian-lai, WANG Hong-jie, et al(张勤虎, 陈年来, 王洪杰, 等). Industrial Water and Waste Water(工业用水与废水), 2015, 46(4): 23.
    [14] XING Ying-ying(邢莹莹). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(6): 1819.
    [15] MAO Yong, LI Jian-chao, LI Qing, et al(毛勇, 李剑超, 李青, 等). Acta Materiae Compositae Sinica(复合材料学报), 2013, 30(5): 144.
    [16] LI Xue-jun, WANG Li-juan, LU An-huai, et al(李学军, 王丽娟, 鲁安怀, 等). Acta Petrologica et Mineralogica(岩石矿物学杂志), 2003, 22(4): 386.
    [17] Miller F A, Wilkins C H. Analytical Chemistry, 1952, 24(8): 1253.
    [18] ZHU Qing-xia, HAN Dan, LI Ya-ming(朱庆霞, 韩丹, 李亚明). Journal of the Chinese Cermamic Society(硅酸盐学报), 2016, 44(12): 1768.
    [19] GUO Jin-yun, WANG Jian-bo, HU Zhi-bo, et al(郭金运, 王建波, 胡志博, 等). Chinese Journal of Geophysics-Chinese Edition, 2015, 58(9): 3103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700