共和干热岩地热井GR2井区三维地应力场反演分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Inversion Analysis of 3D Geostress Field in GR2 Well Area of Gonghe Hot Rock Geothermal Well
  • 作者:李良振 ; 张延军 ; 雷治红 ; 张谦 ; 张森琦 ; 付雷
  • 英文作者:LI Liangzhen;ZHANG Yanjun;LEI Zhihong;ZHANG Qian;ZHANG Senqi;FU Lei;College of construction and engineering of Jilin University;Geological Survey Center of Hydrogeology and Environment,China Geological Survey;
  • 关键词:三维地应力场 ; 改进边界法 ; 深层反演 ; MIDAS ; GTS
  • 英文关键词:3D ground stress field;;improved boundary method;;deep inversion;;MIDAS GTS
  • 中文刊名:SHLX
  • 英文刊名:Chinese Quarterly of Mechanics
  • 机构:吉林大学建设工程学院;中国地质调查局水文地质环境地质调查中心;
  • 出版日期:2019-03-20 08:58
  • 出版单位:力学季刊
  • 年:2019
  • 期:v.40
  • 基金:青海西宁-贵南地热地质调查(DD20160192)
  • 语种:中文;
  • 页:SHLX201901013
  • 页数:9
  • CN:01
  • ISSN:31-1829/O3
  • 分类号:119-127
摘要
GR2地热井位于共和恰卜恰镇,干热岩地热井井深达到4000米,大深度井区极大增加了反演的难度.井区附近20千米内无大型构造,附近地应力场的主要影响因素为板块构造应力和自重应力.由于井中未进行三维地应力场测井工作,所以我们以地面地应力调查结果和震源机制解反演结果为依据,基于MIDAS GTS和大比例尺高清卫星云图建立有限元数值模型,使用改进的边界法进行反演计算,最终预估了井中地应力场分布特征.对于后续的井网布置以及干热岩井场开采具有重要意义.
        GR2 geothermal well is located in the Qia Bu Qia Town of Gonghe. The depth of the hot dry rock geothermal well reaches 4000 meters. The deep wells greatly increase the difficulty of inversion. There is no large structure within 20 km of the well area. The main factors affecting the in-situ stress field are the plate tectonic stress and the gravity stress. Because there is no three-dimensional stress field logging in the well, we set up the finite element numerical model based on the results of the ground stress investigation and the source mechanism solution, Based on MIDAS GTS and large-scale high-definition satellite cloud images, and using the improved boundary method to calculate the inversion, we finally predict the features of the geostress fields in the well. This work is important for the subsequent well pattern layout and the dry hot rock well site mining.
引文
[1]刘飞,胡斌,宋丹,等.西藏邦铺矿区地应力测量及三维地应力反演分析[J].矿业研究与开发,2015,35(3):47-51.
    [2]侯俊领.煤矿深井地应力场反演及应用研究[D].淮南:安徽理工大学,2014.
    [3]汪伟.深部三维地应力场混沌反演及应用[D].长沙:中南大学,2014.
    [4]PEI Q T,LI H B,LIU Y Q,et al.Inversion analysis of three-dimensional geostress field in the second stage project of south-to-north water transfer[J].Applied Mechanics and Materials,2011,66-68:901-906.
    [5]张金.遗传算法在地应力反演中的应用[D].青岛:中国石油大学,2010.
    [6]WANG T X,ZHENG W H,LIANG S J.Numerical simulation of regional stress field under complex geological condition[J].Applied Mechanics and Materials,2011,90-93:531-536.
    [7]王群嶷.大庆油田三维地应力研究与低渗油气资源经济开发[D].北京:中国地质大学,2009.
    [8]张建国,张强勇,杨文东,等.大岗山水电站坝区初始地应力场反演分析[J].岩土力学,2009,30(10):3071-3078.
    [9]DIAO G L,YU L M.Hierarchical clustering analysis of focal mechanism solutions,taking the Haicheng earthquake sequence as an example[J].Earthquake Research in China,1995,1:102-110.
    [10]李青麒.初始应力的回归与三维拟合[J].岩土工程学报,1998,5:71-74.
    [11]殷楠.非均质油气藏地应力场确定方法研究[D].北京:中国石油大学,2016.
    [12]陶智,符文熹,陈俊,等.阴坪水电站厂区初始地应力反演与三维地应力[J].中国农村水利水电,2015,8:180-183.
    [13]马庆福,谢超,宋桂芸,等.基于多元线性回归的地应力场反演分析[J].内蒙古煤炭经济,2017,20:127-131.
    [14]苏国韶,符兴义,李书东.基于FLAC~(3D)的三维地应力场反演分析[J].人民黄河,2011,33(02):142-145.
    [15]谢红强,何江达,肖明砾.大型水电站厂区三维地应力场回归反演分析[J].岩土力学,2009,30(08):2471-2476.
    [16]江权,冯夏庭,陈建林,等.锦屏二级水电站厂址区域三维地应力场非线性反演[J].岩土力学,2008,11:3003-3010.
    [17]袁道阳.青藏高原东北缘晚新生代以来的构造变形特征与时空演化[D].北京:中国地震局地质研究所,2003.
    [18]景锋,盛谦,张勇慧,等.中国大陆浅层地壳实测地应力分布规律研究[J].岩石力学与工程学报,2007,10:2056-2062.
    [19]闫臻,王宗起,李继亮,等.西秦岭楔的构造属性及其增生造山过程[J].岩石学报,2012,28(06):1808-1828.
    [20]张刚.青海南山地区古构造应力及构造演化研究[D].成都:成都理工大学,2016.
    [21]朱志澄,曾佐勋.樊光明构造地质学[M].武汉:中国地质大学出版社,2008,133-134.
    [22]都昌庭.共和地震震源机制解特征[J].高原地震,2001,4:1-5.
    [23]温增平.1994年1月3日至10月12日共和地震的震源机制解[J].西北地震学报,1996,4:78-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700