降糖活性物6-苄氧基-9-(-4-氯甲苯酰基)-四氢化咔唑-3-羧酸在人工胃肠液中的稳定性研究及降解产物分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Stability of Hypoglycemic Candidate 6-benzyloxy-9-(-4-chlorobenzoyl)-tetrahydrocarbazole-3-carboxylic Acid in Artificial Gastrointestinal Fluid and Catabolites Analysis
  • 作者:张吉泉 ; 郝阳 ; 陈瑞 ; 王丽丽 ; 汤磊
  • 英文作者:ZHANG Jiquan;HAO Yang;CHEN Rui;WANG Lili;TANG Lei;College of Pharmacy,Guizhou Medical University;Guizhou Medical University/Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D;Dept.of Pharmacy,Guiyang Maternal and Child Health-care Hospital;
  • 关键词:降糖活性物 ; 6-苄氧基-9-(-4-氯甲苯酰基)-四氢化咔唑-3-羧酸 ; 人工胃肠液 ; 稳定性 ; 降解产物
  • 英文关键词:Hypoglycemic candidate;;6-benzyloxy-9-(-4-chlorobenzoyl)-tetrahydrocarbazole-3-carboxylic acid;;Artificial gastrointestinal fluid;;Stability;;Catabolite
  • 中文刊名:ZGYA
  • 英文刊名:China Pharmacy
  • 机构:贵州医科大学药学院;贵州医科大学/贵州省化学合成药物研发利用工程技术研究中心;贵阳市妇幼保健院药剂科;
  • 出版日期:2019-05-15
  • 出版单位:中国药房
  • 年:2019
  • 期:v.30;No.651
  • 基金:国家自然科学基金资助项目(No.81703356);; 贵州省科技计划项目(No.黔科合〔2016〕支撑2819、黔科合〔2016〕平台人才5402);; 贵阳市科技计划项目(No.筑科合同〔2017〕30-28号);; 贵州省大学生创新创业训练计划项目(No.2018520355)
  • 语种:中文;
  • 页:ZGYA201909006
  • 页数:5
  • CN:09
  • ISSN:50-1055/R
  • 分类号:30-34
摘要
目的:考察降糖活性物6-苄氧基-9-(-4-氯甲苯酰基)-四氢化咔唑-3-羧酸(简称"ZgO2")在人工胃肠液中的稳定性,并分析其降解产物。方法:采用高效液相色谱法,以吲哚美辛为内标,检测ZgO2在空白人工胃液(pH 1.3,不含酶)、空白人工肠液(pH6.8,不含酶)、人工胃液(pH 1.3,含胃蛋白酶)和人工肠液(pH 6.8,含胰蛋白酶)中孵育6 h的含量变化,计算ZgO2剩余百分比;利用超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF/MS)技术分析对照样品(ZgO2对照品溶液)、空白样品(未加入ZgO2的孵育溶液)、孵育样品(稳定性试验中ZgO2浓度变化最明显的孵育体系)的总离子流图,比较差异峰,通过MS图推测降解产物。结果:ZgO2在空白人工肠液和人工肠液中孵育不同时间的剩余百分比均在90%~110%范围内;ZgO2在酸性(pH 1.3)条件中不稳定,在孵育3 h时剩余百分比约为50%,继续孵育剩余百分比无明显变化,人工胃液(含酶)中的剩余百分比低于空白人工胃液(不含酶)的剩余百分比,但相差不明显。孵育样品与对照样品、空白样品的差异体现在负模式扫描下保留时间为5.23 min时,该时间点色谱峰的MS显示,低能量扫描通道存在m/z 320.127 2[M-H]-的准分子离子峰,高能量通道可见碎片离子峰230.081 5、276.138 2,推测ZgO2在酸性(pH 1.3)条件下可能发生酰胺键断裂生成6-苄氧基-四氢化咔唑-3-羧酸。结论:ZgO2在人工肠液中稳定性良好;在酸性(pH 1.3)条件下不稳定,基本上不受胃蛋白酶的影响,降解产物可能为6-苄氧基-四氢化咔唑-3-羧酸。
        OBJECTIVE:To investigate the stability of hypoglycemic candidate 6-benzyloxy-9-(-4-chlorobenzoyl)-tetrahydrocarbazole-3-carboxylic acid(abbreviated "ZgO2") in artificial gastrointestinal fluid, and to analyze its catabolites.METHODS:Using indometacin as internal standard,HPLC method was used to detect the contents of ZgO2 incubated in blank artificial gastric fluid(pH 1.3,no enzyme),blank artificial intestinal fluid(pH 6.8,no enzyme),artificial gastric fluid(pH 1.3,containing pepsin) and artificial intestinal fluid(pH 6.8,containing trypsin) for 6 h. The remaining percentage was calculated.UPLC-Q-TOF was used to analyze TIC of control sample(ZgO2 control solution),blank sample(incubation solution without ZgO2)and incubated sample(incubation system with the most obvious change of ZgO2 concentration in stability test);difference peaks were compared,and catabolites were inferred by MS map. RESULTS:The remaining percentage of ZgO2 incubated in blank artificial intestinal fluid and artificial intestinal fluid for different time ranged 90%-110%. ZgO2 was unstable in acidic condition(p H 1.3). The remaining percentage was about 50% after incubated for 3 h. There was no significant change in the remaining percentage of continuous incubation. The remaining percentage of artificial gastric fluid(including enzymes)was lower than that of blank artificial gastric fluid(without enzymes),but the difference was not obvious. The difference of incubated samples,control samples and blank samples was reflected that the retention time was 5.23 min under negative mode scanning, MS of chromatographic peaks at this time point showed that quasi-molecular ion peaks of m/z 320.127 2 [M-H]-existed in low energy scanning channels and fragment ion peaks of 230.081 5 and 276.138 2 could be seen in high energy channels. It was speculated that amide bond breakage may occur in ZgO2 under acidic(p H 1.3)conditions to generate 6-benzyloxy-tetrahydrocarbazole-3-carboxylic acid. CONCLUSIONS:ZgO2 is stable in artificial intestinal fluid;ZgO2 is not stable in acidic condition(pH 1.3),and is basically not affected by pepsin,the degradation products may be 6-(benzyloxy)-tetrahydrocarbazole-3-carboxylic acid.
引文
[1]吴荔嘉,林碧英,谢根英.2型糖尿病患者的药物治疗和健康教育[J].当代医学,2011,17(22):43-44.
    [2]孙静,罗仁.我国医院糖尿病药物治疗及基本药物应用[J].中国药房,2016,25(24):3313-3319.
    [3]汤磊,张吉泉,钟钢,等.芳杂环衍生物及其在药物中的应用,中国:201610068328.6[P].2016-02-01.
    [4]XIAO B,SANDERS MJ,UNDERWOOD E,et al.Structure of rnanmalian AMPK and its regulation by ADP[J].Nature,2011,472(7342):230-233.
    [5]杨宗圮,李述敏,李云艳,等.新型降糖候选化合物ZG02的合成方法改进及其手性分离[J].化学试剂,2017,39(11):1233-1236.
    [6]ZHANG JQ,LI SM,MA X,et al.Discovery of tetrahydrocarbazoles with potent hypoglycemic and hypolipemic activities[J].Eur J Med Chem,2018.DOI:10.1016/j.ejmech.2018.02.069.
    [7]沈沁,周蕾蕾,李庆勇,等.胆酸偶联喜树碱衍生物E2、G2的稳定性研究[J].现代药物与临床,2018,33(5):1019-1023.
    [8]张毅,张丽,蔡进,等.西咪替丁在人工模拟胃肠液的稳定性研究[J].广州化工,2017,45(20):65-67,105.
    [9]国家药典委员会.中华人民共和国药典:四部[S].2015年版.北京:中国医药科技出版社,2015:119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700