不同住所室内PM_(2.5)的浓度变化规律及温湿度对室内颗粒物影响的初探
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation of Indoor PM_(2.5) Concentrations in Different Residences and Exploration on Impacts of Air Temperature and Humidity on the Indoor Particles
  • 作者:张金萍 ; 束佳松 ; 卢冠舟 ; 王智
  • 英文作者:ZHANG Jinping;SHU Jiasong;LU Guanzhou;WANG Zhi;School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture;Key Laboratory of HVAC, Beijing University of Civil Engineering and Architecture;
  • 关键词:住所 ; 室内颗粒物 ; 浓度变化 ; 差异性 ; 污染源 ; 温湿度
  • 英文关键词:residences;;indoor particulate matter;;concentration change;;difference;;indoor pollution sources;;temperature and relative humidity
  • 中文刊名:JZKX
  • 英文刊名:Building Science
  • 机构:北京建筑大学环境与能源工程学院;北京市"供热供燃气通风及空调工程"重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:建筑科学
  • 年:2019
  • 期:v.35;No.263
  • 基金:国家重点研发计划“室内微生物污染源头识别监测和综合控制技术”(2017YFC0702800);; 国家自然科学基金项目“室内香烛燃烧产生的多环芳烃的散发特征、分配规律及暴露风险”(51378043)
  • 语种:中文;
  • 页:JZKX201906010
  • 页数:10
  • CN:06
  • ISSN:11-1962/TU
  • 分类号:76-84+93
摘要
为深入探究不同住所室内颗粒物PM_(2.5)的浓度水平随室外颗粒物及室内污染源的变化规律,于2017年1月-2018年1月对北京城区4户居民住宅、2个学生宿舍和1户农村住宅的室内PM_(1.0)、PM_(2.5)及PM_(10)浓度、室外PM_(2.5)浓度及室内外温湿度变化进行了逐时测试,并对测试分析结果进行了差异性检验。结果表明:①城市住户室内污染源对室内PM_(2.5)浓度的影响程度为:吸烟>烹饪>清洁。农户污染源对室内PM_(2.5)的影响顺序为:燃煤>燃烧薪柴>吸烟>清洁>人员活动。②当住所门窗关闭室外雾霾开始或结束后,室内PM_(2.5)浓度的升高或降低均延迟于室外PM_(2.5)的变化。③城市住宅与学生宿舍的平均I/O小于1,农村住户的平均I/O大于1,且不同住所之间的I/O差异性显著(P<0.05)。④住户相对湿度在10%~50%时(冬季采暖),室内颗粒物PM_(1.0)/PM_(2.5)及PM_(2.5)/PM_(10)的比值随相对湿度增加而增加,室内细颗粒PM_(2.5)的主要占比为细微颗粒物PM_(1.0);住户相对湿度在50%~80%时(秋季实测),室内颗粒物PM_(1.0)、PM_(2.5)和PM_(10)平均浓度随相对湿度增加而下降。⑥Spearman相关分析得到室内外温差与室内PM_(10)浓度和PM_(2.5)浓度呈现显著性负相关,与室内PM_(1.0)浓度无明显相关性。研究成果可为室内颗粒物控制提供理论依据并对改善住所环境和保护人体健康具有重要意义。
        To study the variation of the indoor PM_(2.5)concentrations with the outdoor articles and indoor pollution sources in residences, the simultaneous tests of the indoor PM_(1.0), PM_(2.5) and PM_(10 )concentrations, outdoor PM_(2.5) concentrations and the temperature and humidity of indoor and outdoor were conducted in different residences in Beijing from January 2017 to January 2018. The tested residences were consisted of four urban residences, two student dormitories and a rural household, and the test results were analyzed by difference test. The results showed that ①the effects of indoor pollution sources on the indoor PM_(2.5) concentrations variated with different residences: smoking> cooking> cleaning in the urban residents and coal-fired> burning firewood> smoking> cleaning> people activities in the rural household. ②When the haze began(ended), there was a delayed increase(drop) of the indoor PM_(2.5) concentrations with the increasing(decreasing) outdoor PM_(2.5) concentrations in the residences with closed windows and doors. ③The average I/O value in urban residences was lower than 1 and that in the rural household was higher than 1. The difference of I/O values among different residences was tested to be significant(P<0.05). ④In the residences with measured relative humidity between 10% and 50% during the winter, the ratios of average particle concentrations of PM_(1.0)/PM_(2.5) and PM_(2.5)/PM_(10 )increased with the increasing relative humidity. As the measured relative humidity ranged from 50% to 80% during the summer, the average particle concentrations of PM_(1.0)、PM_(2.5)and PM_(10 )decreased with the increasing relative humidity. ⑤Indicated by the Spearman correlation analysis, the indoor PM_(10) concentrations and PM_(2.5)concentrations showed significant negative correlation to the difference of indoor and outdoor temperature. This paper provides a theoretical basis for the control of indoor particles and has important implications for improving the residence environment and protecting human health.
引文
[1] Wang J N,Cao S R,Li Z,et al.Human exposure to carbon monoxide and inhalable particulate in Beijing,China[J].Biomed Environ Sci,1988,1:5-12
    [2] Long C M,Suh H H,Koutrakis P.Characterization of indoor particle sources using continuous mass and size monitors [J].J Air Waste Manag Assoc,2000,50(7):1236-1250
    [3] 苏雅璇,赵彬.北京四合院可吸入颗粒物浓度测试分析[J].建筑科学,2008,(04):19-23
    [4] 朱春,李旻雯,缪盈盈,等.城市烹饪油烟颗粒物排放特性分析[J].绿色建筑,2014,6(05):57-60
    [5] 张金萍,卢冠舟,梁雪怡.环境舱内典型物质燃烧释放颗粒物PM1.0的排放特征及影响因素研究[J].建筑科学,2017,33(10):208-216
    [6] 胡彬,陈瑞,徐建勋,等.雾霾超细颗粒物的健康效应[J].科学通报,2015,60(30):2808-2823
    [7] 徐媛婧.大气颗粒物对人体慢性健康效应的研究[D].天津:天津医科大学,2010
    [8] 魏复盛,滕恩江,吴国平,等.空气污染对呼吸健康影响研究[J].医学研究杂志,2005,05:25-26
    [9] London S J.Gene-air pollution interactions in asthma[J].Proc Am Thorac Soc,2007,4(3):217-220
    [10] 张金萍,王玉欢,赵文君.居民住所室内颗粒物浓度水平及影响因素研究[J].建筑科学,2016,32(08):119-126
    [11] 中国疾病预防控制中心.GB/T 18883—2002 室内空气质量标准[S].北京:中国标准出版社,2003
    [12] 国家环境保护部,国家质量监督检查检疫总局.GB/T3095—201环境空气质量标准[S].北京:中国环境科学出版社,2013
    [13] Wan Yali,Chen Chao.Infiltration Characteristic of Outdoor Fine Particulate Matter(PM2.5) for the Window Gaps[J].2015,121:191-198
    [14] Brauer M,Hirtle R,Lang B,et al.Assessment of indoor fine aerosol contributions from environmental tobacco smoke and cooking with a portable nephelometer[J].Journal of Exposure Analysis & Environmental Epidemiology,2000,10(2):136-144
    [15] 李晓男,王立鑫,宋佩瑶.室内外因素对北京居室内PM10污染的影响研究[J].科学技术与工程,2016,16(29):141-146
    [16] 陈超,万亚丽,陈紫光,等.基于大气PM2.5污染的建筑外窗缝隙通风换气次数动态变化特性[J].北京工业大学学报,2017,43(02):285-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700