焦亡及其与头颈部肿瘤关系的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on pyroptosis and relationship between pyroptosis and tumor of head and neck
  • 作者:张骞予 ; 黄志权
  • 英文作者:ZHANG Qian-yu;HUANG Zhi-quan;Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University;
  • 关键词:焦亡 ; caspase ; gasdermin ; IL-1β ; IL-18
  • 英文关键词:Pyroptosis;;Caspase;;Gasdermin;;IL-1β;;IL-18
  • 中文刊名:ZGKQ
  • 英文刊名:China Journal of Oral and Maxillofacial Surgery
  • 机构:中山大学附属孙逸仙纪念医院口腔颌面外科;
  • 出版日期:2019-01-15
  • 出版单位:中国口腔颌面外科杂志
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金(81772892);; 广东省自然科学基金(16ykjc17);; 中山大学重大项目培育和新兴学科、交叉学科计划项目(2016A030313348)
  • 语种:中文;
  • 页:ZGKQ201901032
  • 页数:7
  • CN:01
  • ISSN:11-4980/R
  • 分类号:94-100
摘要
细胞程序性死亡是指细胞依赖于某些特定的基因编码信号或活动的死亡方式。细胞凋亡、自噬、胀亡、焦亡等均属于细胞程序性死亡。其中,焦亡是一种依赖含半胱氨酸的天冬氨酸蛋白水解酶(caspase)的细胞程序性死亡方式。近年来,国内外相关研究发现,焦亡与炎性疾病、自身免疫性疾病及肿瘤均有关系。充分了解焦亡发生的机制及其与肿瘤的关系,对肿瘤的治疗具有一定的指导意义。本文针对焦亡的相关机制及焦亡与头颈部肿瘤的相关研究进展进行综述。
        Programmed cell death refers to the way in which cells depend on certain genes to encode signals or activities. Apoptosis, autophagy, apoptosis and pyroptosis all belong to programmed cell death,pyroptosis is a programmed cell death dependent on cysteine containing aspartate proteinase(caspase). Recently, many studies found that pyroptosis is associated with inflammatory diseases, autoimmune diseases and tumors. A thorough understanding of the mechanism of pyroptosis and its relationship with tumors is of guiding significance in the treatment of tumors. This article focus on the mechanism of pyroptosis and the related research progress of pyroptosis and tumor of head and neck.
引文
[1] Zychlinsky A, Prevost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992,358(6382):167-169.
    [2] Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities:classification and pathophysiological implications[J]. Cell Death Differ, 2007, 14(7):1237-1243.
    [3] Kepp O, Galluzzi L, Zitvogel L, et al. Pyroptosis-a cell death modality of its kind?[J]. Eur J Immunol, 2010, 40(3):627-630.
    [4] Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages[J]. Cell Microbiol, 2006, 8(11):1812-1825.
    [5] Chen X, He WT, Hu L, et al. Pyroptosis is driven by nonselective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res, 2016, 26(9):1007-1020.
    [6] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157(5):1013-1022.
    [7] Case CL. Regulating caspase-1 during infection:roles of NLRs,AIM2, and ASC[J]. Yale J Biol Med, 2011, 84(4):333-343.
    [8] Sollberger G, Strittmatter GE, Garstkiewicz M, et al. Caspase-1:the inflammasome and beyond[J]. Innate Immun, 2014, 20(2):115-125.
    [9] Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature,2016, 535(7610):111-116.
    [10] He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion[J]. Cell Res, 2015, 25(12):1285-1298.
    [11] Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011,479(7371):117-121.
    [12] Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signaling[J].Nature, 2015, 526(7575):666-671.
    [13] Wu H, Che X, Zheng Q, et al. Caspases:a molecular switch node in the crosstalk between autophagy and apoptosis[J]. Int J Biol Sci, 2014, 10(9):1072-1083.
    [14] Bergsbaken T, Fink SL, Cookson BT. Pyroptosis:host cell death and inflammation[J]. Nat Rev Microbiol, 2009, 7(2):99-109.
    [15] Miao EA, Rajan JV, Aderem A. Caspase-1-induced pyroptotic cell death[J]. Immunol Rev, 2011, 243(1):206-214.
    [16] Sun Q, Scott MJ. Caspase-1 as a multifunctional inflammatory mediator:noncytokine maturation roles[J]. J Leukoc Biol, 2016,100(5):961-967.
    [17] Winkler S, Rosen-Wolff A. Caspase-1:an integral regulator of innate immunity[J]. Semin Immunopathol, 2015, 37(4):419-427.
    [18] Bulau AM, Nold MF, Li S, et al. Role of caspase-1 in nuclear translocation of IL-37, release of the cytokine, and IL-37inhibition of innate immune responses[J]. Proc Natl Acad Sci USA, 2014, 111(7):2650-2655.
    [19] Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J].Nature, 2015, 526(7575):660-665.
    [20] Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma[J]. Oncotarget,2016, 7(51):84658-84665.
    [21] Kolb R, Liu G H, Janowski AM, et al. Inflammasomes in cancer:a double-edged sword[J]. Protein Cell, 2014, 5(1):12-20.
    [22] Huang CF, Chen L, Li YC, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma[J]. J Exp Clin Cancer Res,2017, 36(1):116.
    [23] Chen X, Lv Q, Hong Y, et al. IL-1beta maintains the redox balance by regulating glutaredoxin 1 expression during oral carcinogenesis[J]. J Oral Pathol Med, 2017, 46(5):332-339.
    [24] Lee C H, Chang JS, Syu SH, et al. IL-1beta promotes malignant transformation and tumor aggressiveness in oral cancer[J]. J Cell Physiol, 2015, 230(4):875-884.
    [25] Zaki MH, Lamkanfi M, Kanneganti TD. The Nlrp3 inflammasome:contributions to intestinal homeostasis[J]. Trends Immunol, 2011,32(4):171-179.
    [26] Dupaul-Chicoine J, Yeretssian G, Doiron K, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases[J]. Immunity, 2010, 32(3):367-378.
    [27] Hu B, Elinav E, Huber S, et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4[J]. Proc Natl Acad Sci USA, 2010, 107(50):21635-21640.
    [28] Kantono M, Guo B. Inflammasomes and cancer:the dynamic role of the inflammasome in tumor development[J]. Front Immunol,2017, 8:1132.
    [29] Zaki MH, Vogel P, Body-Malapel M, et al. IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation[J]. J Immunol, 2010, 185(8):4912-4920.
    [30] Lin C, Zhang J. Inflammasomes in inflammation-induced cancer[J].Front Immunol, 2017, 8:271.
    [31] Marnett LJ. Oxyradicals and DNA damage[J]. Carcinogenesis,2000, 21(3):361-370.
    [32] Iwanaga K, Yang Y, Raso MG, et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer[J]. Cancer Res, 2008, 68(4):1119-1127.
    [33] Isokawa O, Suda T, Aoyagi Y, et al. Reduction of telomeric repeats as a possible predictor for development of hepatocellular carcinoma:convenient evaluation by slot-blot analysis[J].Hepatology, 1999, 30(2):408-412.
    [34] Xiao W, Samson L. In vivo evidence for endogenous DNA alkylation damage as a source of spontaneous mutation in eukaryotic cells[J]. Proc Natl Acad Sci USA, 1993, 90(6):2117-2121.
    [35] Erener S, Petrilli V, Kassner I, et al. Inflammasome-activated caspase 7 cleaves PARP1 to enhance the expression of a subset of NF-kappaB target genes[J]. Mol Cell, 2012, 46(2):200-211.
    [36] Clevers H. At the crossroads of inflammation and cancer[J]. Cell,2004,118(6):671-674.
    [37] Drexler SK, Bonsignore L, Masin M, et al. Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis[J]. Proc Natl Acad Sci USA, 2012, 109(45):18384-18389.
    [38] Guo B, Fu S, Zhang J, et al. Targeting inflammasome/IL-1pathways for cancer immunotherapy[J]. Sci Rep, 2016, 6:36107.
    [39] Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma[J]. Oncotarget,2016, 7(51):84658-84665.
    [40] Winter RN, Kramer A, Borkowski A, et al. Loss of caspase-1 and caspase-3 protein expression in human prostate cancer[J].Cancer Res, 2001,61(3):1227-1232.
    [41] Wang WJ, Chen D, Jiang MZ, et al. Downregulation of gasdermin D promotes gastric cancer proliferation by regulating cell cyclerelated proteins[J]. J Dig Dis, 2018, 19(2):74-83.
    [42] Ko SC, Huang CR, Shieh JM, et al. Epidermal growth factor protects squamous cell carcinoma against cisplatin-induced cytotoxicity through increased interleukin-1beta expression[J].PLoS One, 2013, 8(2):e55795.
    [43] Feng X, Luo Q, Zhang H, et al. The role of NLRP3inflammasome in 5-fluorouracil resistance of oral squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2017, 36(1):81.
    [44] Stanam A, Gibson-Corley KN, Love-Homan L, et al. Interleukin-1 blockade overcomes erlotinib resistance in head and neck squamous cell carcinoma[J]. Oncotarget, 2016, 7(46):76087-76100.
    [45] Kaler P, Galea V, Augenlicht L, et al. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells[J]. PLoS One, 2010, 5(7):e11700.
    [46] Müerkoster SS, Lust J, Arlt A, et al. Acquired chemoresistance in pancreatic carcinoma cells:induced secretion of IL-1beta and NO lead to inactivation of caspases[J]. Oncogene, 2006, 25(28):3973-3981.
    [47] Ye XL, Zhao YR, Weng GB, et al. IL-33-induced JNK pathway activation confers gastric cancer chemotherapy resistance[J].Oncol Rep, 2015,33(6):2746-2752.
    [48] Huang Q, Lan F, Wang X, et al. IL-1beta-induced activation of p38 promotes metastasis in gastric adenocarcinoma via upregulation of AP-1/c-fos, MMP2 and MMP9[J]. Mol Cancer,2014, 13:18.
    [49] Kwon CH, Moon HJ, Park HJ, et al. S100A8 and S100A9promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells[J]. Mol Cells, 2013, 35(3):226-234.
    [50] Lemieux E, Bergeron S, Durand V, et al. Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis[J]. Int J Cancer, 2009, 125(7):1575-1586.
    [51] Lee JG, Heur M. Interleukin-1beta enhances cell migration through AP-1 and NF-kappaB pathway-dependent FGF2expression in human corneal endothelial cells[J]. Biol Cell,2013, 105(4):175-189.
    [52] Van Tubergen EA, Banerjee R, Liu M, et al. Inactivation or loss of TTP promotes invasion in head and neck cancer via transcript stabilization and secretion of MMP9, MMP2, and IL-6[J]. Clin Cancer Res, 2013, 19(5):1169-1179.
    [53] Soria G, Ofri-Shahak M, Haas I, et al. Inflammatory mediators in breast cancer:coordinated expression of TNFalpha&IL-1beta with CCL2&CCL5 and effects on epithelial-to-mesenchymal transition[J]. BMC Cancer, 2011, 11:130.
    [54] Fathima HK, Ramaswamy P, Nandakumar DN. IL-1beta microenvironment promotes proliferation, migration, and invasion of human glioma cells[J]. Cell Biol Int, 2014, 38(12):1415-1422.
    [55] St John MA. Inflammatory mediators drive metastasis and drug resistance in head and neck squamous cell carcinoma[J].Laryngoscope, 2015, 125(Suppl 3):S1-S11.
    [56] Xu X, Song C, Chen Z, et al. Downregulation of HuR Inhibits the Progression of Esophageal Cancer through Interleukin-18[J].Cancer Res Treat, 2018, 50(1):71-87.
    [57] Shen Z, Seppanen H, Vainionpaa S, et al. IL10, IL11, IL18 are differently expressed in CD14+TAMs and play different role in regulating the invasion of gastric cancer cells under hypoxia[J].Cytokine, 2012, 59(2):352-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700