单偶氮染料AY17的光催化降解动力学及机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Photocatalytic Degradation Kinetics and Mechanism of Monoazo Dye Acid Yellow 17 by UV/TiO_2 in Aqueous Solution
  • 作者:阳海 ; 魏宏庆 ; 胡乐天 ; 胡倩 ; 阳立平 ; 刘华杰 ; 易翔 ; 易兵
  • 英文作者:YANG Hai;WEI Hong-qin;HU Le-tian;HU Qian;YANG Li-ping;LIU Hua-jie;YI Xiang;YI Bing;Key Laboratory of Ecological Textile Material & Novel Dying and Finishing Technology,Hunan Provincial Education Department,College of Chemistry and Chemical Engineering,Hunan Institute of Engineering;College of Chemical Engineering,Xiangtan University;Shenzhen Academy of Environmental Science;
  • 关键词:酸性黄17(AY17) ; 光催化 ; 活性氧物种 ; 动力学 ; 降解机制
  • 英文关键词:acid yellow 17(AY17);;photocatalytic;;reactive oxygen species(ROSs);;kinetics;;degradation mechanism
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:湖南工程学院化学化工学院生态纺织材料及染整新技术湖南省高校重点实验室;湘潭大学化工学院;深圳市环境科学研究院;
  • 出版日期:2016-07-25 13:34
  • 出版单位:环境科学
  • 年:2016
  • 期:v.37
  • 基金:湖南省自然科学基金项目(2015JJ3056);; 湖南省教育厅创新平台项目(14K030);; 国家自然科学基金项目(21207034)
  • 语种:中文;
  • 页:HJKZ201608037
  • 页数:8
  • CN:08
  • ISSN:11-1895/X
  • 分类号:274-281
摘要
为了研究水体环境中单偶氮染料酸性黄17(AY17)有效地去除方式及其可能的降解途径、转化和归趋等,实验首先探索了AY17在不同深度氧化体系中降解的可行性,研究发现其去除效率的大小按照UV/H_2O_2        In order to explore the removal methods, transformation, environmental fate, effect and potential risk of dyes in environmental water,monoazo dye acid yellow 17( AY17) was selected as model compound to investigate the degradation possibility in different advance oxidation processes( AOPs),and the degradation efficiencies followed the order of UV / H_2O_2< UV / Na_2S_2O_8≈UV/FeSO_4·7H_2O < UV / KHSO_5< UV / TiO_2. Subsequently,the different parameters such as catalyst amounts,reaction temperature,substrate concentration and initial p H values affected the degradation rate significantly in the system of UV / TiO_2. The results indicated that the degradation of AY17 followed the pseudo-first-order kinetics,and the rate constant was 0. 011 2 min~(-1). Additionally,the highest degradation rate constant was obtained when the catalyst dosage was 3 g·L~(-1),higher reaction temperature was more beneficial to the degradation of AY17,and the degradation rate constants decreased with increasing substrate concentration and initial p H values.Lastly,the degradation intermediates were also identified by GC / MS,and the degradation pathways were also proposed at the initial stage of photocatalytic process,including the breakage of azo bonds,groups substitution of ·OH on aromatic ring and cleavage of pyrazol ring.
引文
[1]Guo J B,Zhou J T,Wang D,et al.Correlation of anaerobic biodegradability and the electrochemical characteristic of azo dyes[J].Biodegradation,2006,17(4):341-346.
    [2]任南琪,周显娇,郭婉茜,等.染料废水处理技术研究进展[J].化工学报,2013,64(1):84-94.
    [3]Shuai D M,Chaplin B P,Shapley J R,et al.Enhancement of oxyanion and diatrizoate reduction kinetics using selected azo dyes on Pd-based catalysts[J].Environmental Science&Technology,2010,44(5):1773-1779.
    [4]Zhang X L,Hua M,Lv L,et al.Ionic polymer-coated laccase with high activity and enhanced stability:application in the decolourisation of water containing AO7[J].Scientific Reports,2015,5:8253.
    [5]Sreelatha S,Nagendranatha Reddy C,Velvizhi G,et al.Reductive behaviour of acid azo dye based wastewater:biocatalyst activity in conjunction with enzymatic and bio-electro catalytic evaluation[J].Bioresource Technology,2015,188:2-8.
    [6]Yu T H,Dafre A L,de Arago Umbuzeiro G,et al.CYPdependent induction of glutathione S-transferase in Daphnia similis exposed to a disperse azo dye[J].Ecotoxicology,2015,24(1):232-237.
    [7]Guerrero-Coronilla I,Morales-barrera L,Cristiani-Urbina E.Kinetic,isotherm and thermodynamic studies of amaranth dye biosorption from aqueous solution onto water hyacinth leaves[J].Journal of Environment Management,2015,152:99-108.
    [8]Mezohegyi G,van der Zee F P,Font J,et al.Towards advanced aqueous dye removal processes:a short review on the versatile role of activated carbon[J].Journal of Environmental Management,2012,102:148-164.
    [9]Werawatganone P,Wurster D E.Determination of the hydrolysis kinetics ofα-naphthyl acetate in micellar systems and the effect of HPMC(catalyst present)[J].Journal of Pharmaceutical Scienes,2007,96(2):448-458.
    [10]Volkova A V,Nemeth S,Skorb E V,et al.Highly efficient photodegradation of organic pollutants assisted by sonoluminescence[J].Photochemistry and Photobiology,2015,91(1):59-67.
    [11]Pillai I M S,Gupta A K,Tiwari M K.Multivariate optimization for electrochemical oxidation of methyl orange:Pathway identification and toxicity analysis[J].Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances and Environmental Engineering,2015,50(3):301-310.
    [12]Wang X Z,Cheng X,Sun D Z,et al.Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process[J].Environmental Science and Pollution Research,2014,21(8):5713-5723.
    [13]Meng X M,Liu G F,Zhou J T,et al.Effects of redox mediators on azo dye decolorization by Shewanella algae under saline conditions[J].Bioresource Technology,2014,151:63-68.
    [14]Mansour H B,Mosrati R,Corroler D,et al.Mutagenicity and genotoxicity of acid yellow 17 and its biodegradation products[J].Drug and Chemical Toxicology,2009,32(3):222-229.
    [15]Mller P,Wallin H.Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene[J].Mutation Research/Reviews in Mutation Research,2000,462(1):13-30.
    [16]An T C,Yang H,Song W H,et al.Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using Ti O2heterogeneous catalysis[J].The Journal of Physical Chemistry A,2010,114(7):2569-2575.
    [17]An T C,Yang H,Li G Y,et al.Kinetics and mechanism of advanced oxidation processes(AOPs)in degradation of ciprofloxacin in water[J].Applied Catalysis B:Environmental,2010,94(3-4):288-294.
    [18]Zeng J,Yang H,Deng J Y,et al.Common characteristic assessments of transformation mechanism for substituted phenylurea herbicides by reactive oxygen species(ROSs)during photocatalytic process[J].Chemical Engineering Journal,2015,273:519-526.
    [19]Yang H,Liu H J,Hu Z B,et al.Consideration on degradation kinetics and mechanism of thiamethoxam by reactive oxidative species(ROSs)during photocatalytic process[J].Chemical Engineering Journal,2014,245:24-33.
    [20]Rakhshaee R.Rule of Fe0nano-particles and biopolymer structures in kinds of the connected pairs to remove Acid Yellow17 from aqueous solution:simultaneous removal of dye in two paths and by four mechanisms[J].Journal of Hazardous Materials,2011,197:144-152.
    [21]Ranjithkumar V,Sangeetha S,Vairam S.Synthesis of magnetic activated carbon/α-Fe2O3nanocomposite and its application in the removal of acid yellow 17 dye from water[J].Journal of Hazardous Materials,2014,273:127-135.
    [22]Shigwedha N,Hua Z Z,Chen J.Order of photocatalytic degradation as ranked by critical photonic times(CPTs)indicates the composition of organic dye mixtures:selectivity of hydroxyl radicals[J].Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances and Environmental Engineering,2006,41(12):2777-2787.
    [23]Lackey L W,Mines Jr R O,Mccreanor P T.Ozonation of acid yellow 17 dye in a semi-batch bubble column[J].Journal of Hazardous Materials,2006,138(2):357-362.
    [24]Lackey L W,Mines Jr R O.Comparing two empirical models used to predict process parameter dynamics during ozonation of synthetic dye wastewater[J].Journal of Environmental Science and Health,Part A:Toxic/Hazardous Substances and Environmental Engineering,2009,44(2):192-197.
    [25]Yang H,Li G Y,An T C,et al.Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of Ti O2:a case of sulfa drugs[J].Catalysis Today,2010,153(3-4):200-207.
    [26]Yang H,An T C,Li G Y,et al.Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of Ti O2:a case ofβ-blockers[J].Journal of Hazardous Materials,2010,179(1-3):834-839.
    [27]王春英,谷传涛,朱清江,等.稀土La3+掺杂Bi2WO6光催化降解活性艳红X-3B的研究[J].中国环境科学,2015,35(7):2007-2013.
    [28]Wang X J,Wu Z,Wang Y,et al.Adsorption-photodegradation of humic acid in water by using Zn O coupled Ti O2/bamboo charcoal under visible light irradiation[J].Journal of Hazardous Materials,2013,262:16-24.
    [29]周文常,阳海,胡志斌,等.啶虫脒光催化降解动力学的优化及其降解产物的分析[J].环境科学,2014,35(12):4678-4685.
    [30]Santiago-Morales J,Gómez M J,Herrera-López S,et al.Energy efficiency for the removal of non-polar pollutants during ultraviolet irradiation,visible light photocatalysis and ozonation of a wastewater effluent[J].Water Research,2013,47(15):5546-5556.
    [31]阳海,周硕林,尹明亮,等.克百威光催化降解动力学的研究[J].中国环境科学,2013,33(1):82-87.
    [32]阳海,曾健,黎源,等.氙灯/Ti O2体系下敌草隆光催化降解动力学的研究[J].环境科学,2013,34(8):3137-3142.
    [33]邹寒,王树涛,尤宏,等.湿式过氧化氢催化氧化降解喹啉及其机理[J].化工学报2014,65(11):4400-4405.
    [34]Yang H,Zhou S L,Liu H J,et al.Photocatalytic degradation of carbofuran in Ti O2aqueous solution:kinetics using design of experiments and mechanism by HPLC/MS/MS[J].Journal of Environmental Sciences,2013,25(8):1680-1686.
    [35]Yang H,Deng J Y,Liu H J,et al.Kinetics and mechanism of photocatalytic degradation of metobromuron by Ti O2in simulated sunlight[J].Research on Chemical Intermediates,2014,40(1):225-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700