汽油层流燃烧速度的测量及其替代物模型研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on the Laminar Burning Velocity and Surrogate Models of Gasoline
  • 作者:徐昭华 ; 胡二江 ; 黄佐华
  • 英文作者:XU Zhaohua;HU Erjiang;HUANG Zuohua;State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University;
  • 关键词:汽油 ; 层流燃烧速度 ; 实验测量 ; 汽油替代物模型
  • 英文关键词:gasoline;;laminar burning velocity;;experimental measurement;;gasoline surrogate model
  • 中文刊名:XAJT
  • 英文刊名:Journal of Xi'an Jiaotong University
  • 机构:西安交通大学动力工程多相流国家重点实验室;
  • 出版日期:2018-12-18 13:15
  • 出版单位:西安交通大学学报
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(91641124)
  • 语种:中文;
  • 页:XAJT201903006
  • 页数:7
  • CN:03
  • ISSN:61-1069/T
  • 分类号:42-48
摘要
针对实际汽油组分复杂导致数值模拟研究困难的问题,采用球形火焰法,在定容燃烧弹上测量了初始温度分别为358、403、448 K,初始压力分别为0.1、0.2、0.5 MPa,当量比为0.8~1.5工况下,实际汽油、正庚烷、异辛烷、甲苯、异辛烷/正庚烷混合燃料(PRF)、甲苯/异辛烷/正庚烷混合燃料(TRF)的层流燃烧速度,分析了初始温度、压力以及当量比对汽油的层流燃烧速度的影响规律,对比了不同替代物模型对实际汽油的层流燃烧速度的预测结果。基于实验结果,构建了适合我国汽油的双组分和三组分汽油替代物模型,对比结果表明,在本研究的实验工况范围内,三组分汽油替代物模型比双组分汽油替代物模型能够更好预测实际汽油层流燃烧速度。应用Chemkin软件和KAUST清洁燃烧研究中心近期发展的汽油替代物机理,对本研究实验数据进行了数值仿真,该机理对实验数据给出了合理预测。利用本研究提出的汽油替代物模型,可对实际汽油的层流燃烧速度进行合理的预测。
        The spherical flame method was adopted for the problem that numerical simulation research is somewhat difficult due to the complexity of the actual gasoline composition. Laminar burning velocities of actual gasoline were measured in a constant volume bomb. Measurements were also conducted for n-heptane, iso-octane, primary reference fuels(n-heptane and iso-octane blends), and toluene reference fuel(n-heptane, iso-octane and toluene blends). Experiments were performed at the equivalence ratios from 0.8 to 1.5, initial temperatures of 358, 403 and 448 K and pressures of 0.1, 0.2 and 0.5 MPa, respectively. The effects of initial temperature, pressure and equivalence ratio on laminar burning velocity were analyzed. Based on the experimental results, primary reference fuel surrogate model(PRF) and toluene reference fuel surrogate model(TRF) were proposed. The results showed that the TRF model could better predict the laminar burning velocity of actual gasoline than the PRF model. Besides, using the software CHEMKIN and the KAUST Clean Combustion Research Center's recently developed gasoline surrogate, numerical simulation of the measured data was carried out, which gives a reasonable prediction of the measured data under the research conditions. Therefore, a reasonable numerical simulation study on actual gasoline could be carried out by using the gasoline surrogate model proposed in this study.
引文
[1] SARATHY S M, FAROOQ A, KALGHATGI G T. Recent progress in gasoline surrogate fuels [J]. Progress in Energy & Combustion Science, 2018, 65: 67-108.
    [2] ANDRAE J C G. Development of a detailed kinetic model for gasoline surrogate fuels [J]. Fuel, 2008, 87(10/11): 2013-2022.
    [3] PERA C, KNOP V. Methodology to define gasoline surrogates dedicated to auto-ignition in engines [J]. Fuel, 2012, 96(7): 59-69.
    [4] SARATHY S M, KUKKADAPU G, MEHL M, et al. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures [J]. Proceedings of the Combustion Institute, 2015, 35(1): 249-257.
    [5] MORGAN N, SMALLBONE A, BHAVE A, et al. Mapping surrogate gasoline compositions into RON/MON space [J]. Combustion & Flame, 2010, 157(6): 1122-1131.
    [6] MANNAA O, MANSOUR M S, ROBERTS W L, et al. Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON [J]. Combustion & Flame, 2015, 162(6): 2311-2321.
    [7] JERZEMBECK S, PETERS N, PEPIOT-DESJARDINS P, et al. Laminar burning velocities at high pressure for primary reference fuels and gasoline: experimental and numerical investigation [J]. Combustion & Flame, 2009, 156(2): 292-301.
    [8] SILEGHEM L, ALEKSEEV V A, VANCOILLIE J, et al. Laminar burning velocity of gasoline and the gasoline surrogate components iso-octane, n-heptane and toluene [J]. Fuel, 2013, 112(3): 355-365.
    [9] 姚春德, 王阳, 宋金瓯, 等. 汽油与异辛烷/正庚烷的燃烧特性分析 [J]. 内燃机学报, 2009(2): 116-120. YAO Chunde, WANG Yang, SONG Jinou, et al. Analysis of gasoline and iso-octane with N-heptane flames [J]. Transactions of CSICE, 2009(2): 116-120.
    [10] HUANG Z, QIAN W, YU J, et al. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures [J]. Transactions of CSICE, 2007, 86(15): 2360-2366.
    [11] FRANKEL M L, SIVASHINSKY G I. On quenching of curved flames [J]. Combustion Science & Technology, 1984, 40(5/6): 257-268.
    [12] CHEN Z. On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames [J]. Combustion & Flame, 2011, 158(2): 291-300.
    [13] WILLIAMS B F A. Combustion theory [M]. Boston, USA: Addison-Wesley, 1965.
    [14] KEE R J. A Fortran program for modeling steady laminar one-dimensional premixed flames [J]. Sandia Report, 1985, 143(5): 65.
    [15] PARK S, WANG Yu, CHUNG S H, et al. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels [J]Combustion & Flame, 2017, 178: 46-60.
    [16] DIRRENBERGER P, GLAUDE P A, BOUNACEUR R, et al. Laminar burning velocity of gasolines with addition of ethanol [J]. Fuel, 2014, 115(1): 162-169.
    [17] KELLEY A P, LIU W, XIN Y X, et al. Laminar flame speeds, non-premixed stagnation ignition, and reduced mechanisms in the oxidation of iso-octane [J]. Proceedings of the Combustion Institute, 2011, 33(1): 501-508.
    [18] SARATHY S M, KUKKADAPU G, MEHL M, et al. Ignition of alkane-rich FACE gasoline fuels and their surrogate mixtures [J]. Proceedings of the Combustion Institute, 2015, 35(1): 249-257.
    [19] 郑朝蕾, 覃炎忻. 汽油替代物辛烷值预测与组分比例确定模型 [J]. 西南交通大学学报, 2015, 50(3): 523-528.ZHEN Zhaolei, QIN Yanxin. Prediction model for octane number and component proportions of gasoline surrogate fuel [J]. Journal of Southwest Jiaotong University, 2015, 50(3): 523-528.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700