浑善达克沙地东部地区天然水体的水化学组成及其控制因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrochemical Composition of Natural Waters and Its Affecting Factors in the East Hunshandak Sandy Land
  • 作者:任孝宗 ; 李建刚 ; 刘敏 ; 李继彦
  • 英文作者:REN Xiao-zong;LI Jian-gang;LIU Min;LI Ji-yan;School of Geographical Sciences,Taiyuan Normal University;Baiyin Construction and Management Station of Three-north Shelterbelt System;
  • 关键词:水化学 ; 控制因素 ; 原始型Durov三线图 ; Gibbs图 ; 离子比例关系 ; 浑善达克沙地
  • 英文关键词:hydrochemical composition;;affecting factor;;original Durov Diagram;;Gibbs Diagram;;ion ratio;;Hunshandak Sandy Land
  • 中文刊名:GHQJ
  • 英文刊名:Arid Zone Research
  • 机构:太原师范学院地理科学学院;白银市三北防护林工程建设管理站;
  • 出版日期:2019-05-16 15:22
  • 出版单位:干旱区研究
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金项目(41602196,41601005);; 中国科学院陆地水循环及地表过程重点实验室开放基金项目(WL2018004);; 山西省“1331工程”重点学科建设计划项目联合资助
  • 语种:中文;
  • 页:GHQJ201904001
  • 页数:10
  • CN:04
  • ISSN:65-1095/X
  • 分类号:4-13
摘要
浑善达克沙地东部地区位于内蒙古高原,其天然水体为淡水。利用原始型Durov三线图对其天然水体进行水化学分类,结果表明,地表水水化学类型属于碳酸氢盐组,而地下水属于碳酸氢盐组、混合组和硫酸盐组多种类型。天然水体样品在Gibbs图中的分布表明,岩性控制是形成该地区天然水体水化学组成的主要因素,这种情况不同于我国西部和中部沙漠由于蒸发强烈而受控于蒸发-结晶作用的天然水体。天然水体的离子比例关系表明,地下水中蒸发盐岩和硅酸盐岩的风化程度较高,而碳酸盐岩风化程度低,这可能是由于地下水的水-岩作用时间长、二氧化碳供给不充分引起的;相反,由于水-岩作用时间短、二氧化碳供给充分,地表水中蒸发盐岩和硅酸盐岩的风化程度较低,而碳酸盐岩风化程度高。
        The East Hunshandak Sandy Land is located in the Inner Mongolia Plateau. Compared with other deserts in West China,water resources in Hunshandak Sandy Land are relatively abundant,even some rivers originate from the sandy land. In this study 24 water samples including 11 groundwater samples,6 lake water samples,5 river water samples and 2 spring water samples were collected from 2011 to 2012. Physical parameters including the p H value,oxidation-reduction potential,electrical conductivity,total dissolved solids and salinity were measured on site with a portable instrument. Major anions (Cl~-,NO_3~- and SO_4~(2-)) and cations (Na~+,K~+,Mg~(2+),Ca~(2+) and NH_4~+) were determined by electrochemical detectors of ion chromatography at the Institute of Geology and Geophysics,Chinese Academy of Sciences. The concentration of HCO_3~- was measured by titration with HCl following Gran Method. The results showed that total dissolved solids (TDS) of water samples ranged from 67 mg·L~(-1) to 660 mg·L~(-1),which revealed that freshwater was dominant in the natural waters in Hunshandak Sandy Land. Moreover,the concentration of calcium was the highest in cations in almost all water samples,while that of bicarbonate was the highest in anions except for some groundwater and spring water samples. The pH values of groundwater were commonly slightly lower than 7,while those of others,such as lake water,river water and spring water,were slightly higher than 7. In addition,almost all concentrations of cations and anions in groundwater were the highest in natural waters. The hydrochemical types were determined by the original Durov Diagram. The results showed that surface water was dominated by bicarbonate,but groundwater was dominated by bicarbonate,mixed type or sulfate. Gibbs Diagram was used to determine the factors affecting the hydrochemical composition of natural waters. Different from the deserts in the western and central parts of China,where the evaporation was so strong that evaporation-crystallization affected mainly the hydrochemical composition of the natural waters,and the water-rock interaction was the main factor affecting the natural waters in East Hunshandak Sandy Land. Ion ratios in samples indicated that the rock weathering in waters was different. The weathering degree of evaporative salt rock and silicate rock in groundwater is higher,while that of carbonate rock is lower,which may be caused by the insufficient supply of carbon dioxide due to the long water-rock interaction time in groundwater. On the contrary,due to the short water-rock interaction time and sufficient supply of carbon dioxide,the degree of weathering of evaporative and silicate rocks in surface water is low,while that of carbonate rocks is high.
引文
[1]朱秉启,杨小平.塔克拉玛干沙漠天然水体的化学特征及其成因[J].科学通报,2007,52(13):1 561-1 566.[Zhu Bingqi,Yang Xiaoping.Chemical composition of natural waters and its origin in the Taklamakan Desert[J].Chinese Science Bulletin,2007,52(13):1 561-1 566.]
    [2]张涛,蔡五田,李颖智,等.尼洋河流域水化学特征及其控制因素[J].环境科学,2017,38(11):4 537-4 545.[Zhang Tao,Cai Wutian,Li Yingzhi,et al.Major ionic features and their pssible controls in the water of the Niyang River Basin[J].Environmental Science,2017,38(11):4 537-4 545.]
    [3]邵跃杰,罗光明,王建,等.新疆克里雅河上游主要离子化学特征及其成因[J].干旱区研究,2018,35(5):1 021-1 029.[Shao Yuejie,Luo Guangming,Wang Jian,et al.Hydrochemical characteristics and formation causes of main ions in water of the Keriya River,Xinjiang[J].Arid Zone Research,2018,35(5):1 021-1 029.]
    [4]李会亚,冯起,陈丽娟,等.民勤绿洲灌区地下水水化学特征及其演化驱动机理[J].干旱区研究,2017,34(4):733-740.[Li Huiya,Feng Qi,Chen Lijuan,et al.Hydrochemical characteristics and evolution mechanism of groundwater in the Minqin Oasis[J].Arid Zone Research,2017,34(4):733-740.]
    [5]张艳,吴勇,杨军,等.阆中市思依镇水化学特征及其成因分析[J].环境科学,2015,36(9):3 230-3 237.[Zhang Yan,Wu Yong,Yang Jun,et al.Hydrochemical characteristic and reasoning analysis in Siyi Town,Langzhong City[J].Environmental Science,2015,36(9):3 230-3 237.]
    [6]宋献方,李发东,于静洁,等.基于氢氧同位素与水化学的潮白河流域地下水水循环特征[J].地理研究,2007,26(1):11-21.[Song Xianfang,Li Fadong,Yu Jingjie,et al.Characteristics of groundwater cycle using deuterium,oxygen-18 and hydrochemistry in Chaobai River Basin[J].Geographical Research,2007,26(1):11-21.]
    [7]Chen J,Liu X,Wang C,et al.Isotopic constraints on the origin of groundwater in the Ordos Basin of Northern China[J].Environmental Earth Sciences,2012,66(2):505-517.
    [8]Chen J,Sun X,Gu W,et al.Isotopic and hydrochemical data to restrict the origin of the groundwater in the Badain Jaran Desert,Northern China[J].Geochemistry International,2012,50(5):455-465.
    [9]Ren X,Zhu B,Liu M,et al.Mechanism of groundwater recharge in the middle-latitude desert of eastern Hunshandake,China:Diffuse or focused recharge?[J].Hydrogeology Journal,2019,27(2):761-783.
    [10]魏亚平,范敬龙,徐新文,等.塔克拉玛干沙漠南部地下水化学演化模拟[J].中国沙漠,2016,36(3):798-804.[Wei Yaping,Fan Jinglong,Xu Xinwen,et al.Hydrogeochemical modelling of groundwater chemical evolution from southern margin to Hinterland of Taklamakan Desert[J].Journal of Desert Research,2016,36(3):798-804.]
    [11]丁贞玉,马金珠,何建华.腾格里沙漠西南缘地下水水化学形成特征及演化[J].干旱区地理,2009,32(6):948-957.[Ding Zhenyu,Ma Jinzhu,He Jianhua.Geochemical evolution of groundwater in the southwest of Tengger Desert,NW of China[J].Arid Land Geography,2009,32(6):948-957.]
    [12]党慧慧,董军,岳宁,等.贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究[J].冰川冻土,2015,37(3):793-802.[Dang Huihui,Dong Jun,Yue Ning,et al.Study of the evolution of hydrochemical properties of groundwater in Ulan Buh Desert in the north of the Helan Mountains[J].Journal of Glaciology and Geocryology,2015,37(3):793-802.]
    [13]靳鹤龄,苏志珠,孙良英,等.浑善达克沙地全新世气候变化[J].科学通报,2004,49(15):1 532-1 536.[Jin Heling,Su Zhizhu,Sun Liangying,et al.Climate change in Holocene,Hunshandake Sandy Land[J].Chinese Science Bulletin,2004,49(15):1 532-1 536.]
    [14]张洪,靳鹤龄,苏志珠,等.全新世浑善达克沙地粒度旋回及其反映的气候变化[J].中国沙漠,2005,25(1):1-7.[Zhang Hong,Jin Heling,Su Zhizhu,et al.Climate changes revealed by grain-size cycles of Holocene in Hunshandake Desert[J].Journal of Desert Research,2005,25(1):1-7.]
    [15]Yang X,Li H,Conacher A.Large-scale controls on the development of sand seas in Northern China[J].Quaternary International,2012,250:74-83.
    [16]朱震达,吴正,刘恕,等.中国沙漠概论[M].北京:科学出版社,1980.[Zhu Zhenda,Wu Zheng,Liu Shu,et al.An Outline of Chinese Deserts[M].Beijing:Science Press,1980.]
    [17]Yang X,Zhu B,Wang X,et al.Late Quaternary environmental changes and organic carbon density in the Hunshandake Sandy Land,Eastern Inner Mongolia,China[J].Global and Planetary Change,2008,61(1-2):70-78.
    [18]Liu Z,Yang X.Geochemical-geomorphological evidence for the provenance of aeolian sands and sedimentary environments in the Hunshandake Sandy Land,Eastern Inner Mongolia,China[J].Acta Geologica Sinica,2013,87(3):871-884.
    [19]Yang X,Wang X,Liu Z,et al.Initiation and variation of the dune fields in semi-arid China:With a special reference to the Hunshandake Sandy Land,Inner Mongolia[J].Quaternary Science Reviews,2013,78:369-380.
    [20]Su Hua,Li Yonggeng,Lan Zhenjiang,et al.Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland,North China[J].Journal of Plant Research,2009,122(6):611.
    [21]国家地质总局水文地质工程地质研究所.中华人民共和国水文地质图集[M].北京:地图出版社,1979.[Institute of Hydrogeology and Engineering Geology,State Geological Administration.Hydrogeological Atlas of the People’s Republic of China[M].Beijing:China Cartographic Publishing House,1979.]
    [22]Gran G.Determination of the equivalence point in potentiometric titrations.Part II[J].Analyst,1952,77:661-671.
    [23]Yang X,Williams J.The ion chemistry of lakes and late Holocene desiccation in the Badain Jaran Desert,Inner Mongolia,China[J].Catena,2003,51(1):45-60.
    [24]Zaporozec A.Graphical interpretation of water-quality data[J].Ground Water,1972,10(2):32-43.
    [25]任孝宗,刘敏,张迎珍,等.基于Matlab的Durov三线图的实现[J].干旱区地理,2018,41(4):744-750.[Ren Xiaozong,Liu Min,Zhang Yingzhen,et al.Plotting Durov diagram based on Matlab[J].Arid Land Geography,2018,41(4):744-750.]
    [26]Gibbs R J.Mechanisms controlling world water chemistry[J].Science,1970,170(3 962):1 088-1 090.
    [27]Wen X,Wu Y,Su J,et al.Hydrochemical characteristics and salinity of groundwater in the Ejina Basin,Northwestern China[J].Environmental Geology,2005,48(6):665-675.
    [28]魏水莲,刘新平,赵学勇,等.科尔沁沙地奈曼地区地下水水质时空变化特征[J].中国沙漠,2017,37(3):571-579.[Wei Shuilian,Liu Xinping,Zhao Xueyong,et al.Spatial and temporal variability analysis of groundwater quality in Naiman Region of Horqin Sandy Land[J].Journal of Desert Research,2017,37(3):571-579.]
    [29]唐玺雯,吴锦奎,薛丽洋,等.锡林河流域地表水水化学主离子特征及控制因素[J].环境科学,2014,35(1):131-142.[Tang Xiwen,Wu Jinkui,Xue Liyang,et al.Major ion chemistry of surface water in the Xilin River Basin and the possible controls[J].Environmental Science,2014,35(1):131-142.]
    [30]Garrels R M,Mackenzie F T.Evolution of Sedimentary Rocks[M].New York:W.W.Norton and Company,1971.
    [31]Stumm W.Chemistry of the Solid-Water Interface:Processes at the Mineral-Water and Particle-Water Interface in Natural Systems[M].New York:Wiley,1992.
    [32]Zhu B,Yang X.The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin,Western China[J].Chinese Science Bulletin,2007,52(15):2 123-2 129.
    [33]Zhang L,Song X,Xia J,et al.Major element chemistry of the Huai River basin,China[J].Applied Geochemistry,2011,26(3):293-300.
    [34]Chen J,Wang F,Xia X,et al.Major element chemistry of the Changjiang(Yangtze River)[J].Chemical Geology,2002,187(3-4):231-255.
    [35]Ahmad T,Khanna P P,Chakrapani G J,et al.Geochemical characteristics of water and sediment of the Indus River,Trans-Himalaya,India:Constraints on weathering and erosion[J].Journal of Asian Earth Sciences,1998,16(2-3):333-346.
    [36]王亚平,王岚,许春雪,等.长江水系水文地球化学特征及主要离子的化学成因[J].地质通报,2010,29(2-3):446-456.[Wang Yaping,Wang Lan,Xu Chunxue,et al.Hydro-geochemistry and genesis of major ions in the Yangtze River,China[J].Geological Bulletin of China,2010,29(2-3):446-456]
    [37]李亚文,韩蔚田.蒸发岩成因的物理化学研究[J].地学前缘,1994,1(3-4):211-215,210.[Li Yawen,Han Weitian.A review of physicochemicl study on the origin of evaporite[J].Earth Science Frontiers,1994,1(3-4):211-215,210.]
    [38]Appelo C A J,Postma D.Geochemistry,Groundwater and Pollution,Second Edition[M].Amsterdam:Taylor&Francis,2005.
    [39]吕婕梅,安艳玲,吴起鑫,等.贵州清水江流域丰水期水化学特征及离子来源分析[J].环境科学,2015,36(5):1 565-1 572.[LüJiemei,An Yanling,Wu Qixin,et al.Hydrochemical characteristics and sources of Qingshuijiang River Basin at wet season in Guizhou Province[J].Environmental Science,2015,36(5):1 565-1 572.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700