底吹钢包气-钢-渣三相流过程离散-连续转化及联合算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling of gas-steel-slag three-phase flow in ladle with discrete-continuum transition and combination
  • 作者:李林敏 ; 李宝宽 ; 许昌 ; 胡代清 ; 刘玉成
  • 英文作者:Li Linmin;Li Baokuan;Xu Chang;Hu Daiqing;Liu Yucheng;College of Energy and Electrical Engineering,Hohai University;School of Metallurgy,Northeastern University;Anhui Jinzhai Pumped Storage Power Co.,Ltd;
  • 关键词:底吹钢包 ; 多相流 ; 离散气泡模型 ; 界面追踪法 ; 多尺度算法
  • 英文关键词:gas-stirring ladle;;multi-phase flow;;discrete bubble model;;interface tracking method;;multi-scale simulation
  • 中文刊名:HUJI
  • 英文刊名:Journal of Materials and Metallurgy
  • 机构:河海大学能源与电气学院;东北大学冶金学院;安徽金寨抽水蓄能有限公司;
  • 出版日期:2018-09-15
  • 出版单位:材料与冶金学报
  • 年:2018
  • 期:v.17;No.67
  • 基金:中国博士后科学基金(2018M630502);; 江苏省青年基金(BK20180505);; 中央高校基本科研业务费(2018B01614)
  • 语种:中文;
  • 页:HUJI201803005
  • 页数:10
  • CN:03
  • ISSN:21-1473/TF
  • 分类号:27-35+42
摘要
针对底吹钢包内气-钢-渣三相流过程中小尺度离散气泡和较大尺度自由界面共存的问题,本文采用离散气泡模型模拟小尺度气泡,而对较大尺度气泡和渣层的上下表面则采用界面追踪法直接求解,并采用大涡模拟方法以更好地描述其中的非稳态流动规律.同时,建立离散气泡和大尺度连续气体的转化模型,实现离散-连续联合的多尺度多相流数值计算方法.模型可以同时完整地描述大尺度连续界面和小尺度离散气泡的运动行为;较完善地揭示了小尺度离散气泡的合并过程,离散气泡和连续界面的相互作用及聚合过程,大尺度气泡的运动、变形及合并破碎过程,渣层波动、渣滴及渣眼的形成及演变过程等,并对比实验结果验证了模型的可靠性.
        Aimed at the phenomenon of coexistence of the small scale discrete bubbles with the large scale interfaces for the gas-steel-slag three-phase flow in the bottom blowing ladle,for the small scale bubble,a discrete bubble model was used,and for the large scale bubble and the slag surface,an interface tracking method was applied,while the large eddy simulation was used to describe the unstable flow. An algorithm of discrete-continuum transition between the small and the large bubbles was established to perform a multi-scale simulation of bubbles. By the treatments mentioned above,behavior of the large scale continuous interface and the small scale bubble can be completely revealed. The experimental results verified the reliability of the modeling framework.
引文
[1]李宝宽,赫冀成,陆钟武.底吹钢包内流动与混合的数值模拟[J].金属学报,1993,29(4):143-147.(Li B,He J,Lu Z.Numerical simulation on flow and mixing processes in bottom blown ladles[J].Acta Metallurgica Sinica,1993,29(4):143-147.)
    [2]刘中秋,李林敏,曹茂雪,等.钢包底吹氩均混时间及临界流量水模型实验[J].材料与冶金学报,2016,15(3):176-180.(Liu Z,Li L,Cao M,et al.Water model of mixing time and critical flow rate in a gas-stirred ladle[J].Journal Materials and Metallurgy,2016,15(3):176-180.)
    [3]Zhang L.Mathematical simulation of fluid flow in gas-stirred liquid systems[J].Modelling&Simulation Materials Science&Engineering,2000,8(4):463-476.
    [4]Lou W,Zhu M.Numerical simulation of gas and liquid twophase flow in gas-stirred systems based on Euler-Euler approach[J].Metallurgical&Materials Transactions B,2013,44(5):1251-1263.
    [5]Bellot J P,Felice V D,Dussoubs B,et al.Coupling of CFDand PBE calculations to simulate the behavior of an inclusion population in a gas-stirring ladle[J].Metallurgical&Materials Transactions B,2014,45(1):13-21.
    [6]Mukhopadhyay A,Grald E W,Dhanasekharan K,et al.Detailed modeling of gas flow in liquid steel:bubble size distribution and voidage calculation[J].Steel Research International,2005,76(1):22-32.
    [7]Sokolichin A,Eigenberger G,Lapin A,et al.Dynamic numerical simulation of gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange[J].Chemical Engineering Science,1997,52(4):611-626.
    [8]Guo D,Irons G A.Modeling of gas-liquid reactions in ladle metallurgy:Part II.numerical simulation[J].Metallurgical&Materials Transactions B,2000,31(6):1457-1464.
    [9]Cao Q,Nastac L.Mathematical investigation of fluid flow,mass transfer,and slag-steel interfacial behavior in gas-stirred ladles[J].Metallurgical&Materials Transactions B,2018,49(3):1388-1404.
    [10]Li B,Yin H,Zhou C Q,et al.Modeling of three-phase flows and behavior of slag/steel interface in an argon gas stirred ladle[J].ISIJ International,2008,48(2):1704-1711.
    [11]Llanos C A,Garcia-Hernandez S,Ramos-Banderas A,et al.Multiphase modeling of the fluidynamics of bottom argon bubbling during ladle operations[J].ISIJ International,2010,50(3):396-402.
    [12]Li L,Liu Z,Li B,et al.Water model and CFD-PBMcoupled model of gas-liquid-slag three-phase flow in ladle metallurgy[J].ISIJ International,2015,55(7):1337-1346.
    [13]朱苗勇,娄文涛,王卫领.炼钢与连铸过程数值模拟研究进展[J].金属学报,2018,54(2):131-150.(Zhu M,Lou W,Wang W,Research progress of numerical simulation in steelmaking and continuous casting processes[J].Acta Metallurgica Sinica,2018,54(2):131-150.)
    [14]Liu H,Qi Z,Xu M.Numerical simulation of fluid flow and interfacial behavior in three-phase argon-stirred ladles with one plug and dual plugs[J].Steel Research International,2011,82(4):440-458.
    [15]Cloete S W P,Eksteen J J,Bradshaw S M.A numerical modelling investigation into design variables influencing mixing efficiency in full scale gas stirred ladles[J].Minerals Engineering,2013,46-47:16-24.
    [16]Liu Z,Sun Z,Li B.Modeling of quasi-four-phase flow in continuous casting mold using hybrid Eulerian and Lagrangian approach[J].Metallurgical&Materials Transactions B,2017,48(2):1248-1267.
    [17]Ling H,Li F,Zhang L,et al.Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF+DPM model[J].Metallurgical&Materials Transactions B,2016,47(3):1950-1961.
    [18]Chen G,He S,Li Y.Investigation of the air-argon-steelslag flow in an industrial RH reactor with VOF-DPMcoupled model[J].Metallurgical&Materials Transactions B,2017,48(4):2176-2186.
    [19]Li L,Li B.Investigation of bubble-slag layer behaviors with hybrid Eulerian-Lagrangian modeling and large eddy simulation[J].JOM,2016,68(8):2160-2169.
    [20]Liu Z,Li L,Li B,Modeling of gas-steel-slag three-phase flow in ladle metallurgy:Part I.physical modeling[J].ISIJInternational,2017,57(11):1971-1979.
    [21]Li L,Li B,Liu Z.Modeling of gas-steel-slag three-phase flow in ladle metallurgy:Part II.multi-scale mathematical model[J].ISIJ International,2017,57(11):1980-1989.
    [22]Liu Z,Li B.Scale-adaptive analysis of Euler-Euler large eddy simulation for laboratory scale dispersed bubbly flows[J].Chemical Engineering Journal,2018,338:465-477.
    [23]Ishii M,Zuber N.Drag coefficient and relative velocity in bubbly,droplet or particulate flow[J].AIChE Journal,1979,25(5):843-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700