GIS温升的多物理场仿真与实验及热通量分布特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-physics Coupling Simulation and Experiment of Temperature Rise in GIS and Heat Flux Distribution Characteristics
  • 作者:侯国斌 ; 傅明利 ; 邓晓峰 ; 王邸博 ; 李兴文 ; 卓然
  • 英文作者:HOU Guobin;FU Mingli;DENG Xiaofeng;WANG Dibo;LI Xingwen;ZHUO Ran;State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University;Electric Power Research Institute,China Southern Power Grid;
  • 关键词:温升 ; 气流场 ; 热通量 ; 欧姆损耗 ; 多物理场耦合 ; 气体绝缘全封闭组合电器
  • 英文关键词:temperature rise;;gas flow field;;heat flux;;ohmic loss;;coupled multi-physics;;GIS
  • 中文刊名:GDYJ
  • 英文刊名:High Voltage Engineering
  • 机构:西安交通大学电力设备电气绝缘国家重点实验室;南方电网科学研究院有限责任公司;
  • 出版日期:2019-07-12
  • 出版单位:高电压技术
  • 年:2019
  • 期:v.45;No.320
  • 基金:南方电网公司科技项目(ZBKJXM20170090)~~
  • 语种:中文;
  • 页:GDYJ201907036
  • 页数:7
  • CN:07
  • ISSN:42-1239/TM
  • 分类号:313-319
摘要
准确计算GIS的温升和分析其热通量分布对于GIS的设计具有重要意义。为此建立了126kV三相共箱式GIS的三维电–磁–热–流耦合模型,采用三维多物理场耦合方法分析GIS的电磁场、温度场和气流场。首先利用Ansys Maxwell 3D模块计算获得GIS的欧姆损耗为1 107.8 W,将欧姆损耗作为热源导入Ansys Fluent模块进行热流耦合计算,得到温度分布和流速分布,电接触处和外壳的温升最高约为52.5K和20K;然后研究了GIS对流和辐射热通量的分布特性,并分析了不同传热方式的影响,为以后的传热分析方法奠定了基础;最后进行了温升实验,仿真与实验的最大误差为3.601 K,验证了仿真方法的正确性,进而可以为产品的优化设计提供理论依据。
        Accurate prediction of GIS temperature-rise and analysis of the heat flux distribution are very important for the design of GIS. Using the 3-D multi-physics coupling method, we established a 3-D electromagnetic-thermal-flow coupled model to analyze the electromagnetic field, temperature field and gas flow field of 126 kV three-phase-in-one-tank type GIS. Firstly, the Ohmic losses of GIS which were calculated to be 1 107.8 W by Ansys Maxwell 3 D were introduced into Ansys Fluent as heat source to calculate the temperature distribution and velocity distribution, and the highest temperature-rises of electrical contact area and shell were about 52.5 K and 20 K, respectively. Then the distribution characteristics of convection and radiation heat flux were analyzed, which lays a foundation for the future heat transfer analysis method. Finally, the temperature-rise test results were compared with the simulation results and the maximum error was 3.601 K, which verifies the correctness of the simulation results. Thereby, the multi-physics calculation of GIS can provide a theoretical basis for the optimal design of the product.
引文
[1]李兴文,赵虎.SF6替代气体的研究进展综述[J].高电压技术,2016,42(6):1695-1701.LI Xingwen,ZHAO Hu.Review of research progress in SF6 substitute gases[J].High Voltage Engineering,2016,42(6):1695-1701.
    [2]李兴文,邓云坤,姜旭,等.环保气体C4F7N和C5F10O与CO2混合气体的绝缘性能及其应用[J].高电压技术,2017,43(3):708-714.LI Xingwen,DENG Yunkun,JIANG Xu,et al.Insulation performance and application of enviroment-friendly gases mixtures of C4F7N and C5F10O with CO2[J].High Voltage Engineering,2017,43(3):708-714.
    [3]赵虎,张晗,李兴文,等.SF6-CO2和SF6-CF4混合气体断路器的喷口压力特性[J].高电压技术,2016,42(6):1767-1774.ZHAO Hu,ZHANG Han,LI Xingwen,et al.Transient nozzle pressure characteristics of SF6-CO2 and SF6-CF4 circuit breaker[J].High Voltage Engineering,2016,42(6):1767-1774.
    [4]PAWAR S,JOSHI K,ANDREWS L,et al.Application of computational fluid dynamics to reduce the new product development cycle time of the SF6 gas circuit breaker[J].IEEE Transactions on Power Delivery,2012,27(1):156-163.
    [5]QU J,CHONG F,WU G,et al.Application of computational fluid dynamics to predict the temperature-rise of low voltage switchgear compartment[C]∥2014 IEEE 60th Holm Conference on Electrical Contacts(Holm).New Orleans,USA:IEEE,2015:1-5.
    [6]FAN S,XU J,XIN L,et al.Three-dimensional magneto-thermal fields analysis of 1 100 kV GIS disconnector[C]∥International Conference on High Voltage Engineering and Application,2008.[S.l.]:IEEE,2008:531-534.
    [7]DHOTRE M T,KORBEL J,YE X,et al.CFD simulation of temperature rise in high voltage circuit breakers[J].IEEE Transactions on Power Delivery,2017,32(6):2530-2536.
    [8]QIANG R,NIU C,WANG X,et al.Thermal analysis on spring contacts of high voltage apparatus[C]∥13th International Session on Elecro-Mechanical Devices:IS-EMD2013.Wuhan,China:[s.n.],2013:209-212.
    [9]REBZANI N,CLAVEL E,MARTY P,et al.Numerical multiphysics modeling of temperature rises in gas insulated busbars[J].IEEETransactions on Dielectrics&Electrical Insulation,2016,23(5):2579-2586.
    [10]熊兰,赵艳龙,杨子康,等.树脂浇注干式变压器温升分析与计算[J].高电压技术,2013,39(2):265-271.XIONG Lan,ZHAO Yanlong,YANG Zikang,et al.Temperature rise analysis and calculation of cast resin dry-type transformers[J].High Voltage Engineering,2013,39(2):265-271.
    [11]贾志东,范伟男,袁野,等.基于温升试验的10 kV交联聚乙烯电缆冷缩终端热分析[J].高电压技术,2014,40(3):795-800.JIA Zhidong,FAN Weinan,YUAN Ye,et al.Thermal analysis of cold-shrinkable terminal joint of 10 kV XLPE based on temperature-rise tests[J].High Voltage Engineering,2014,40(3):795-800.
    [12]孙国霞,关向雨,金向朝,等.基于多场耦合计算的气体绝缘开关设备母线接头过热性故障分析[J].高电压技术,2014,40(11):3445-3451.SUN Guoxia,GUAN Xiangyu,JIN Xiangchao,et al.Temperature rise calculation and overheating fault analysis of gas insulated switchgear bus connector based on coupled field theory[J].High Voltage Engineering,2014,40(11):3445-3451.
    [13]陈嵘,杨松伟,程泳,等.干式空心并联电抗器电磁-流体-温度场耦合计算与分析[J].高电压技术,2017,43(9):3021-3028.CHEN Rong,YANG Songwei,CHENG Yong,et al.Electromagnetic-fluid-temperature coupling calculation and analysis of dry-type air-core shunt reactor[J].High Voltage Engineering,2017,43(9):3021-3028.
    [14]田慕琴,朱晶晶,宋建成,等.基于流固耦合分析的矿用干式变压器温度场仿真[J].高电压技术,2016,42(12):3972-3981.TIAN Muqin,ZHU Jingjing,SONG Jiancheng,et al.Temperature field simulation of coal dry-type transformer based on fluid-solid coupling analysis[J].High Voltage Engineering,2016,42(12):3972-3981.
    [15]荣命哲.电接触理论[M].北京:机械工业出版社,2004.RONG Mingzhe.Electrical contacts fundamentals[M].Beijing,China:China Machine Press,2004.
    [16]汪倩,屈建宇,吴刚,等.配电开关柜温升特性的多物理场仿真和实验[J].高电压技术,2016,42(6):1775-1780.WANG Qian,QU Jianyu,WU Gang,et al.Multi-physical field simulation and experimental study of temperature-rise characteristics of switchgear compartment[J].High Voltage Engineering,2016,42(6):1775-1780.
    [17]冯慈璋,马西奎.工程电磁场导论[M].北京:高等教育出版社,2000:198-206.FENG Cizhang,MA Xikui.Introduction to engineering electromagnetic fields[M].Beijing,China:Higher Education Press,2000:198-206.
    [18]赵博,张洪亮.Ansoft 12在工程电磁场中的应用[M].北京:中国水利水电出版社,2010:60-62.ZHAO Bo,ZHANG Hongliang.Application of Ansoft 12 in engineering electromagnetic field[M].Beijing,China:China Water&Power Press,2010:60-62.
    [19]赵治华,袁建生,马伟明.邻近效应对钢板阻抗的影响及其等效电路模型[J].清华大学学报:自然科学版,2007,47(4):490-493.ZHAO Zhihua,YUAN Jiansheng,MA Weiming.Mechanism and model of steel plane impedance influenced by proximity[J].Journal of Tsinghua University:Science Edition,2007,47(4):490-493.
    [20]杨世铭,陶文铨.传热学[M].4版.北京:高等教育出版社,2006:268-271.YANG Shiming,TAO Wenquan.Heat transfer theory[M].Beijing,China:Higher Education Press,2006:268-271.
    [21]LINDMAYER M.Simulation of switching arcs under transverse magnetic fields for DC interruption[J].IEEE Transactions on Plasma Science,2016,44(2):187-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700