铝阳极氧化的多孔结构抑制二次电子发射的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Suppressing second electron yield based on porous anodic alumina
  • 作者:白春江 ; 封国宝 ; 崔万照 ; 贺永宁 ; 张雯 ; 胡少光 ; 叶鸣 ; 胡天存 ; 黄光荪 ; 王琪
  • 英文作者:Bai Chun-Jiang;Feng Guo-Bao;Cui Wan-Zhao;He Yong-Ning;Zhang Wen;Hu Shao-Guang;Ye Ming;Hu Tian-Cun;Huang Guang-Sun;Wang Qi;National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology (Xi’an);School of Electronic and Information Engineering, Xi’an Jiaotong University;
  • 关键词:阳极氧化 ; 多孔结构 ; 二次电子发射 ; 微放电阈值
  • 英文关键词:anodization;;porous structures;;second electron yield;;multipactor threshold
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国空间技术研究院西安分院空间微波技术重点实验室;西安交通大学电子与信息工程学院;
  • 出版日期:2018-01-10 11:16
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:U1537211,11675278,51675421)资助的课题~~
  • 语种:中文;
  • 页:WLXB201803026
  • 页数:8
  • CN:03
  • ISSN:11-1958/O4
  • 分类号:249-256
摘要
针对空间大功率微波部件中的二次电子倍增效应影响微波部件性能的问题,基于铝阳极氧化产生大深宽比、高孔隙率均匀纳米级多孔结构的特性,结合蒸发镀银技术,提出一种有效降低表面二次电子发射系数的方法.结果表明,相比于未阳极氧化的铝样片,在不清洗样片的情况下(实际的样片表面都会存在吸附或沾污),测试得到二次电子发射系数曲线的第一能量交叉点E1从45 eV增加到77 eV,最大二次电子发射系数SEY_(max)从2.68减小到1.52;在清洗样片的情况下(清洗是为了去除吸附或沾污,获得理想的表面),测试得到第一能量交叉点E_1从40 eV增加到211 eV,最大二次电子发射系数SEY_(max)从2.55减小到1.36.为了验证本文所提方法对抑制空间大功率微波部件二次电子倍增效应的有效性,分别将获得的未阳极氧化和阳极氧化后的二次电子发射系数数据用于一个X频段阻抗变换器设计中,结果显示,使用本文所提方法后,阻抗变换器的微放电阈值从7000 W提高到125000 W.本文研究的方法不仅对解决空间大功率微波部件的微放电问题有指导意义,而且对真空电子器件、加速器等领域的研究也具有重要参考价值.
        The multipactor effect is a resonant vacuum electron discharge that can occur in microwave and millimeter-wave subsystems, such as filters, multiplexers, and radio-frequency satellite payloads. In a high-power microwave device, multipator discharge can cause the device to break down, and thus degrading its performance. Fortunately, the multipactor effect can be mitigated by reducing the secondary electron yield(SEY) of the material which a microwave device is made from. Therefore, how to reduce the SEY of material is an important matter. In view of this problem, a new method to reduce the SEY is presented in this paper. This method is based on the fact that when aluminum sheet is treated with anodizing, many porous structures with high height-to-width ratios can be formed on the surface of sheet. These porous structures are conducive to reducing SEY. However, the alumina film covers these porous structures. Because alumina has poor performance in conductivity, the loss of high-power microwave device will increase if the microwave device is anodized. In consequence, the performances of the microwave device will deteriorate. In order to avoid this problem,silver film is chosen, and is electroplated on the anodized aluminum sheet. Although silver film is electroplated on the aluminum sheet, there are still many porous structures on the surface. In order to validate the method in this paper,some aluminum samples are anodized. And then, the SEYs of these samples are obtained by the SEY measurement system. The results show that this method is efficient for reducing the SEY. Compared with the non-anodized sample,the uncleaned sample on whose surface there exists the adsorption or contamination shows that the value of the first energy crossing point of the measured curve of emission coefficient of secondary electrons, E_1, increases from 45 eV to77 eV, and the maximum value of SEY(SEY_(max)) decreases from 2.68 to 1.52; when the samples are all cleaned(in order to obtain ideal surface by wiping off adsorption or contamination), the value of E_1 increases from 40 eV to 211 eV,and the value of SEY_(max) decreases from 2.55 to 1.36. Furthermore, the multipactor threshold of an X-band impedance transformer is simulated with using these SEY data to validate this method. And it is concluded that compared with the threshold of the original design, the multipactor threshold of the impedance transformer which is treated with the method increases from 7000 W to 125000 W. Therefore, it can be seen that the method presented in this paper is helpful in solving the problem of the multipactor in high-power microwave device for space. Meanwhile, as a usual method, the method can also be used to push forward the researches of vacuum electron devices and accelerators.
引文
[1]Zhang N,Cao M,Cui W Z,Hu T C,Wang R,Li Y 2015Acta Phys.Sin.64 207901(in Chinese)[张娜,曹猛,崔万照,胡天存,王瑞,李韵2015物理学报64 207901]
    [2]Li Y D,Yang W J,Zhang N,Cui W Z,Liu C L 2013Acta Phys.Sin.62 077901(in Chinese)[李永东,杨文晋,张娜,崔万照,刘纯亮2013物理学报62 077901]
    [3]Cao G M,Nie Y,Wang J Q 2005 J.Astron.Metro.Measure.25 36(in Chinese)[曹桂明,聂莹,王积勤2005宇航计测技术25 36]
    [4]Arregui I,Teberio F,Arnedo I,Lujambio A,Chudzik M,Benito D,Lopetegi T,Jost R,G?rtz F J,Gil J,Vicente C,Gimeno B,Boria V E,Raboso D,Laso M A G 2013IEEE Trans.MTT 61 4376
    [5]Anza S,Vicente C,Gil J,Mattes M,Wolk D,Wochner U,Boria V E,Gimeno B,Raboso D 2012 IEEE Trans.MTT 60 2093
    [6]Bai G D,Ding M Q,Zhao Q P,Qu B,Feng J J 2009Vacu.Electron.5 22(in Chinese)[白国栋,丁明清,赵青平,瞿波,冯进军2009真空电子技术5 22]
    [7]Aguilera L,Montero I,Dávila M E,Ruiz A,Galán L,Nistor V,Raboso D,Palomares J,Soria F 2013 J.Phys.D:Appl.Phys.46 165104
    [8]Ye M,He Y N,Hu S G,Wang R,Hu T C,Yang J,Cui W Z 2013 J.Appl.Phys.113 074904
    [9]Ye M,He Y N,Hu S G,Yang J,Wang R,Hu T C,Peng W B,Cui W Z 2013 J.Appl.Phys.114 104905
    [10]He Y N,Peng W B,Cui W Z,Ye M,Zhao X L,Wang D,Hu T C,Wang R,Li Y 2016 AIP Adv.6 025122
    [11]Ye M,He Y N,Wang R,Hu T C,Zhang N,Yang J,Cui W Z,Zhang Z B 2014 Acta Phys.Sin.63 147901(in Chinese)[叶鸣,贺永宁,王瑞,胡天存,张娜,杨晶,崔万照,张忠兵2014物理学报63 147901]
    [12]Chang C,Huang H,Liu G Z,Chen C H,Hou Q,Fang J Y,Zhu X X,Zhang Y P 2009 J.Appl.Phys.105 123305
    [13]Huang G S,Tian P K,Guan Y Q,Qu Y,Zhang X 2014Space Elec.Tech.11 97(in Chinese)[黄光荪,田普科,关跃强,曲媛,张璇2014空间电子技术11 97]
    [14]Liu S 2013 M.S.Thesis(Changsha:Hunan Normal University)(in Chinese)[刘书2013硕士学位论文(长沙:湖南师范大学)]
    [15]LüF 2010 M.S.Thesis(Harbin:Harbin University of Science and Technology)(in Chinese)[吕芳2010硕士学位论文(哈尔滨:哈尔滨理工大学)]
    [16]Zhu J 2005 M.S.Thesis(Tianjin:Tianjin University)(in Chinese)[朱静2005硕士学位论文(天津:天津大学)]
    [17]Zhang Y,Feng H,Jin Y F,Yang Y,Wu X B 2009 Plat.Finish.31 9(in Chinese)[张勇,冯辉,金远锋,杨勇,武行兵2009电镀与精饰31 9]
    [18]Zhu X F,Song Y,Xiao Y H,Zhu Q,Gao K,Lu L D2007 Chin.J.Vacu.Sci.Tech.27 113(in Chinese)[朱绪飞,宋晔,肖迎红,朱晴,高魁,陆路德2007真空科学与技术学报27 113]
    [19]Ren J J,Zuo Y 2012 J.Beijing Univ.Chem.Tech.3974(in Chinese)[任建军,左禹2012北京化工大学学报3974]
    [20]Feng G B,Cui W Z,Zhang N,Cao M,Liu C L 2017Chin.Phys.B 26 097901
    [21]He Y,Li J,Cao M,Cui W Z,Liu C L 2017 Chin.Space Sci.Tech.37 17(in Chinese)[何韵,李军,曹猛,崔万照,刘纯亮2017中国空间科学技术37 17]
    [22]Bai C J,Cui W Z,Ye M,He Y N 2017 Chin.Space Sci.Tech.37 61(in Chinese)[白春江,崔万照,叶鸣,贺永宁2017中国空间科学技术37 61]
    [23]Zhu X F,Han H,Song Y,Ma H T,Qi W X,Lu C,Xu C 2012 Acta Phys.Sin.61 228202(in Chinese)[朱绪飞,韩华,宋哗,马宏图,戚卫星,路超,徐辰2012物理学报61228202]
    [24]Zhu X F,Song Y,Yu D L,Zhang C S,Yao W 2013Electronchem.Commun.29 71
    [25]Zhang Y L,Cheng W J,Du F,Zhang S Y,Ma W H,Li D D,Song Y,Zhu X F 2015 Electrochim.Acta 180 147
    [26]Liu P,Jiang Y X,Geng M,Zheng J,Sun C,Cai Y W,Zhu X F 2011 Chin.J.Vacu.Sci.Tech.31 119(in Chinese)[刘鹏,姜元霞,耿敏,郑杰,孙晨,蔡宇武,朱绪飞2011真空科学与技术学报31 119]
    [27]Zhao S W,Xing J,Fan H W,Zhang S Y,Li D D,Zhu X F 2017 J.Electrochem.Soc.164 E187
    [28]Zhang N,Cao M,Cui W Z,Zhang H B 2014 Chin.J.Vacu.Sci.Tech.34 554(in Chinese)[张娜,曹猛,崔万照,张海波2014真空科学与技术学报34 554]
    [29]Cui W Z,Li Y,Yang J,Hu T C,Wang X B,Wang R,Zhang N,Zhang H T,He Y N 2016 Chin.Phys.B 25068401
    [30]Li Y,Cui W Z,Zhang N,Wang X B,Wang H G,Li Y D,Zhang J F 2014 Chin.Phys.B 23 048402

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700