Lgr5调控Wnt/β-Catenin信号通路与心血管疾病研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Lgr5 regulation of Wnt/ beta-Catenin signaling pathway in cardiovascular disease
  • 作者:黄磊 ; 王秋林
  • 英文作者:HUANG Lei;WANG Qiulin;Department of Cardiology, The First Affiliated Hospital of Chengdu Medical College;
  • 关键词:心血管疾病 ; 富含亮氨酸G蛋白偶联受体5 ; Wnt基因 ; β-连接蛋白 ; 信号通路
  • 英文关键词:Cardiovascular disease;;Leucine rich G protein coupled receptor 5;;Wntgene;;β-catenin;;Signaling pathway
  • 中文刊名:XIBU
  • 英文刊名:Medical Journal of West China
  • 机构:成都医学院第一附属医院心内科;
  • 出版日期:2019-03-20
  • 出版单位:西部医学
  • 年:2019
  • 期:v.31
  • 基金:四川省科技厅科技支撑计划项目(2016SZ0052)
  • 语种:中文;
  • 页:XIBU201903039
  • 页数:5
  • CN:03
  • ISSN:51-1654/R
  • 分类号:155-158+162
摘要
心血管疾病的发病率和死亡率逐年上升,已成为威胁人类健康的重大疾病之一。过去Lgr5-Wnt/β-Catenin信号通路为肿瘤学研究热点。最新研究表明Wnt信号通路与心血管疾病存在密切联系,Lgr5作为Wnt/β-Catenin信号通路受体蛋白亦被认为是心血管疾病潜在分子标记物。本文就Lgr5-Wnt/β-Catenin信号通路与心血管疾病的研究进展作一综述。
        The morbidity and mortality of cardiovascular diseases increase year by year, and it has become one of the most important diseases threatening human health. Lgr5-Wnt/β-Catenin signaling pathway has been a hot topic in oncology. The latest research displays that the Wnt signaling pathway is closely related to cardiovascular diseases,as the receptor protein and targetgene of Wnt/β-Catenin singeal,Lgr5 is also considered as the potential molecular marker of cardiovascular diseases.we introduced the Lgr5-Wnt/β-Catenin and overciewed the research progress the relationship between Lgr5-Wnt/β-Catenin and cardiovasular diseases in recent years.
引文
[1] 陈伟伟, 高润霖, 刘力生,等. 中国心血管病报告2016概要[J]. 中国循环杂志, 2017, 32(6):521-530.
    [2] Berndt JD, Moon RT. Cell biology. Making a point with Wnt signals[J]. Science, 2013, 339(6126):1388-1389.
    [3] Wu J, Cohen S M. Repression of Teashirt marks the initiation of wing development[J]. Development, 2002, 129(10):2411-2418.
    [4] Nusse R. Wnt signaling in disease and in development[J]. Cell Research, 2005, 15(1):28-32.
    [5] Chien AJ, Conrad WH, Moon RT. A Wnt survival guide: from flies to human disease[J]. Journal of Investigative Dermatology, 2009, 129(7):1614-1627.
    [6] MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases[J]. Developmental Cell, 2009, 17(1):9-26.
    [7] Hsu SY,Liang SG,Hsueh AJ.Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled,seven-Transmembrane region[J].Molecular Endocrinology,2009,12(12):1830-1845.
    [8] Carmon KS, Gong X, Lin Q, et al. R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/-catenin signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(28):11452-11457.
    [9] De LW, Barker N, Low TY, et al. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling[J]. Nature, 2011, 476(7360):293-297.
    [10] Andrei Glinka, Christine Dolde, Nadine Kirsch, et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling[J].EMBO reports,2011, 12(10):1055-1061.
    [11] Glinka A, Dolde C, Kirsch N,et al. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling[J]. Embo Reports, 2011, 12(10):1055-1061.
    [12] Birchmeier W. Stem cells: Orphan receptors find a home[J].Nature, 2011, 476(7360):287-288.
    [13] Kinzel B, Pikiolek M, Orsini V, et al. Functional roles of Lgr4 and Lgr5 in embryonic gut, kidney and skin development in mice[J]. Developmental Biology, 2014, 390(2):181-190.
    [14] Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins[J]. Embo Journal, 2012, 31(31):2685-2696.
    [15] Hartogh SCD, Wolstencroft K, Mummery CL, et al.A comprehensive gene expression analysis at sequential stages of in vitro cardiac differentiation from isolated MESP1-expressing-mesoderm progenitors[J]. Scientific Reports, 2016, 19(6):19386-19409.
    [16] Shaikh LH, Zhou J, Teo AED, et al. LGR5 Activates Noncanonical Wnt Signaling and Inhibits Aldosterone Production in the Human Adrenal[J]. Journal of Clinical Endocrinology & Metabolism, 2015, 100(6):836-844.
    [17] Gelfand BD, Meller J, Pryor AW, et al. Hemodynamic activation of beta-catenin and T-cell-specific transcription factor signaling in vascular endothelium regulates fibronectin expression[J]. Arteriosclerosis Thrombosis & Vascular Biology, 2011, 31(7):1625-1633.
    [18] Sumida T, Naito AT, Nomura S, et al. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling[J].Nature Communications, 2015, 6(22):6241-6252.
    [19] Chen L, Wu Q, Guo F, et al. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: Possible involvement in myofibroblast proliferation and migration[J]. Journal of cellular and molecular medicine, 2004, 8(2):257-264.
    [20] Assmus B, Iwasaki M, Sch?chinger V, et al. Acute myocardial infarction activates progenitor cells and increases Wnt signalling in the bone marrow[J].European Heart Journal, 2012, 33(15):1911-1919.
    [21] Malekar P, Hagenmueller M, Anyanwu A, et al. Wnt signaling is critical for maladaptive cardiac hypertrophy and accelerates myocardial remodeling[J].Hypertension, 2010, 55(4):939-945.
    [22] Tao J, Chen B, Ma Y, et al. FrzA gene protects cardiomyocytes from H. sub.2 O. sub.2-induced oxidative stress through restraining the Wnt/Frizzled pathway[J].Lipids in Health & Disease, 2015, 14(1):1-10.
    [23] Barandon L, Casassus F, Leroux L, et al. Secreted frizzled-related protein-1 improves postinfarction scar formation through a modulation of inflammatory response[J].Arteriosclerosis Thrombosis & Vascular Biology, 2011, 31(11):80-87.
    [24] He W, Seidman J G. Exogenously administered secreted frizzled related protein 2 (Sfrp2) reduces fibrosis and improves cardiac function in a rat model of myocardial infarction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49):21110-21115.
    [25] Min JK, Park H, Choi HJ, et al. The Wnt antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells[J]. Journal of Clinical Investigation, 2011, 121(5):1882-1893.
    [26] Bao MW, Cai Z, Zhang XJ, et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction[J]. Basic Research in Cardiology, 2015, 110(3):1-17.
    [27] Wang L, Hu XB, Zhang W, et al. Dickkopf-1 as a novel predictor is associated with risk stratification by GRACE risk scores for predictive value in patients with acute coronary syndrome: a retrospective research [J].2013, 8(1):54731-54737.
    [28] Hahn JY, Cho HJ, Bae JW, et al. Beta-catenin overexpression reduces myocardial infarct size through differential effects on cardiomyocytes and cardiac fibroblasts[J].Journal of Biological Chemistry, 2006, 281(41):30979-30989.
    [29] Chen X, Shevtsov SP, Hsich E, et al. The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy[J]. Molecular & Cellular Biology, 2006, 26(12):4462-4473.
    [30] Sklepkiewicz P, Shiomi T, Kaur R, et al. Loss of sFRP-1 Leads to Deterioration of Cardiac Function in Mice and Plays a Role in Human Cardiomyopathy[J]. Circulation Heart Failure, 2015, 8(2):623-630.
    [31] Duan J, Gherghe C, Liu D, et al. Wnt1/βcatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair[J]. Embo Journal, 2012, 31(2):429-442.
    [32] Moon J, Zhou H, Zhang L S, et al. Blockade to pathological remodeling of infarcted heart tissue using a porcupine antagonist[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7):1649-1654.
    [33] Bastakoty D, Saraswati S, Joshi P, et al. Temporary, Systemic Inhibition of the Wnt/β-Catenin Pathway promotes Regenerative Cardiac Repair following Myocardial Infarct[J]. Cell Stem Cells Regen Med, 2016, 2(2): 1-27.
    [34] Xiang FL, Fang M, Yutzey KE. Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice[J]. Nature Communications, 2017, 8(1):712-725.
    [35] Basso C, Bauce B, Corrado D, et al. Pathophysiology of arrhythmogenic cardiomyopathy[J]. Nature Reviews Cardiology, 2012, 9(4):223-233.
    [36] Priori SG, Santiago DJ.Arrhythmogenic Cardiomyopathy: Pathophysiology Beyond Cardiac Myocytes[J]. Circulation Research, 2017, 121(12):1296-1298.
    [37] Hoorntje ET, Te Rijdt WP, James CA, et al. Arrhythmogenic cardiomyopathy: pathology, genetics, and concepts in pathogenesis[J]. Cardiovascular Research, 2017, 113(12):1521-1531.
    [38] Nava A, Thiene G, Canciani B, et al. Familial occurrence of right ventricular dysplasia: a study involving nine families[J].Journal of the American College of Cardiology,1988, 12(5):1222-1228.
    [39] Ross SE, Hemati N, Longo KA, et al. Inhibition of Adipogenesis by Wnt Signaling[J]. Science, 2000, 289(5481):950-953.
    [40] Zhang H, Liu S, Dong T, et al.Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy[J]. Scientific Reports, 2016, 16(6):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700