不同亚类硅酸盐矿物的中红外光谱学特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The middle-infrared spectroscopic characteristics of several common silicate minerals
  • 作者:朱莹 ; 丁竑瑞 ; 李艳 ; 黎晏彰 ; 许晓明 ; 鲁安怀
  • 英文作者:ZHU Ying;DING Hong-rui;LI Yan;LI Yan-zhang;XU Xiao-ming;LU An-huai;Key Laboratory of Orogenic Belts and Crustal Evolution, Beijing Key Laboratory of Mineral Environmental Function,Peking University;
  • 关键词:硅酸盐矿物 ; 红外吸收光谱 ; 热红外发射光谱 ; 发射率
  • 英文关键词:Silicate mineral;;Infrared absorption spectroscopy;;Thermal infrared emission spectroscopy;;Emissivity
  • 中文刊名:KWXB
  • 英文刊名:Acta Mineralogica Sinica
  • 机构:北京大学造山带与地壳演化教育部重点实验室矿物环境功能北京市重点实验室北京大学地球与空间科学学院;
  • 出版日期:2019-01-09 14:47
  • 出版单位:矿物学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(批准号:41230103;41272003);; 国家重点基础研究发展计划(批准号:2014CB846001)
  • 语种:中文;
  • 页:KWXB201902005
  • 页数:10
  • CN:02
  • ISSN:52-1045/P
  • 分类号:43-52
摘要
利用热红外发射光谱研究了不同亚类硅酸盐矿物镁橄榄石、透闪石、蛇纹石和钠长石的红外发射光谱特征。在120oC时,通过对400~1650 cm-1的红外波段进行积分计算,发现硅酸盐矿物中镁橄榄石的发射率最高,可达到0.988,钠长石最低为0.947。硅酸盐矿物在850~1300cm-1区间均产生宽的低发射带,该发射带与硅氧四面体层中(Si,Al)-O的伸缩振动相关;在470 cm-1左右则形成相对尖锐的低发射带,与硅氧四面体层中(Si, Al)-O的弯曲振动相关。从岛状、链状、层状到架状硅酸盐矿物由于Si O2聚合程度依次增加,最强发射谷的位置依次向高频方向偏移,说明硅氧四面体中Si-O伸缩振动带的位置受到了n(Si)/n(O)比值的制约。此外,在辐射能量谱里,镁橄榄石、透闪石、蛇纹石和钠长石的最强辐射谷范围趋于变宽,依次为115、162、225和247 cm-1,反映了吸收的辐射能增加。综上可推测,硅酸盐矿物强的发射率可能与硅氧四面体中Si-O的振动模式、Si O2的聚合度、辐射能量谱中最强辐射谷的波长范围有关。
        We have utilized infrared emission spectroscopy to investigate the infrared emission spectrum characteristics of forsterite, tremolite, serpentine, and albite in this paper. By integral calculation of spectra within the infrared band of 400-1650 cm-1 at 120 oC, it is found that forsterite has the highest emissivity of 0.988 among selected 4 kinds of silicate minerals, while albite has the lowest emissivity of 0.947. Furthermore, all 4 silicate minerals have a wide low emission band ranging from 850 to 1300 cm-1 and a relatively sharp low emission band around 470 cm-1, which are related to the stretching vibration and bending vibration of the(Si, Al)-O bond in tetrahedral layers of silicates, respectively. With the gradual increase of SiO2 polymerization degrees from island, chain, sheet, to framework silicates, the location of the strongest emission valley in emissivity patterns is gradually shifted towards the high emission band, indicating that the position of stretching vibration band in the Si-O tetrahedron is restricted by the atomic ratio of Si and O(n(Si)/n(O)).Moreover, in radiant energy patterns, ranges of the strongest emission valley for forsterite, tremolite, serpentine, and albite are 115, 162, 225 and 247 cm-1, respectively, indicating that the increase of radiant energies with the enhancement of SiO2 polymerization degrees of those silicates. In conclusion, it can be speculated that the strong emissivity of silicate minerals could be associated with the vibration mode of Si-O bond in the silica tetrahedron, SiO2 polymerization degree, and range of the strongest emission valley in the spectrum.
引文
[1]Vatansever F,Hamblin M R.Far infrared radiation(FIR):its biological effects and medical applications[J].Photonics&Lasers in Medicine,2012,1(4):255-266.
    [2]刘景一.红外物理[M].北京:兵器工业出版社,1992.
    [3]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社,2004.
    [4]Low M J D.Infra-red Emission Spectra of Minerals[J].Nature,1965,208(5015):1089-1090.
    [5]Coleman I,Low M J D.Measurement of the Spectral Emission of Infrared Radiation of Minerals and Rocks Using Multiple-Scan Interferometry[J].Applied Optics,1966,5(9):1453.
    [6]Ruff S W,Christensen P R,Barbera P W,et al.Quantitative thermal emission spectroscopy of minerals:A laboratory technique for measurement and calibration[J].Journal of Geophysical Research Solid Earth,1997,102(B7):14899-14913.
    [7]Coblentz W W.Investigation of infrared spectra[Z].Carnegie Institute of Washington,1906,Publ.65.
    [8]Lyon R J P,Burns E A.Analysis of rocks and minerals by reflected infrared radiation[J].Economic Geology,1963,58:274-284.
    [9]Lyon R J P.Analysis of rocks by spectral infrared emission(8 to 25 microns)[J].Economic Geology,1965,60:715-736.
    [10]Lyon R J P.Evaluation of infrared spectrophotometry for compositional analysis of lunar and planetary soils:rough and powdered surfaces[Z].Stanford Research Institute,1964,Project No.PSU-3943,Contract No.NASr-49(04),NASA CR-100,Nov.1964.
    [11]Low M J D,Coleman I.The Measurement of Infrared Emission Spectra Using Multiple-Scan Interferometry[J].Spectrochimica Acta,1966,22(3):369-376.
    [12]Frost R L,Reddy B J,Bahfenne S,et al.Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases[J].Spectrochimica Acta(Part A Molecular&Biomolecular Spectroscopy),2008,71(4):1610-1616.
    [13]Frost R L,Palmer S J.Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3).2H2O-implications for the formula of nesquehonite[J].Spectrochimica Acta Part A Molecular&Biomolecular Spectroscopy,2011,78(4):1255-1260.
    [14]Michalski J R,Kraft M D,Sharp T G,et al.Mineralogical constraints on the high-silica Martian surface component observed by TES[J].Icarus,2005,174(1):161-177.
    [15]Michalski J R,Kraft M D,Sharp T G,et al.Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on Mars from Thermal Emission Spectrometer data[J].Journal of Geophysical Research Planets,2006,111(E3).
    [16]InouéS,Kabaya M.Biological activities caused by far-infrared radiation[J].International Journal of Biometeorology,1989,33(3):145-150.
    [17]Barolet D,Christiaens F,Hamblin M R.Infrared and skin:Friend or foe[J].Journal of Photochemistry&Photobiology(B Biology),2016,155:78-85.
    [18]Tei C,Imamura T,Kinugawa K,et al.Waon Therapy for Managing Chronic Heart Failure-Results from a Multicenter Prospective Randomized WAON-CHF Study[J].Circulation Journal,2016,80(4).
    [19]Szigeti G P,Hegyi G,Szasz O.Hyperthermia versus Oncothermia:Cellular effects in cancer therapy[C]//International Clinical Hyperthermia Society,Hindawi Publishing Corporation,2013:70-75.
    [20]Shapiro M G,Homma K,Villarreal S,et al.Infrared light excites cells by changing their electrical capacitance[J].Nature Communications,2012,3(2):736.
    [21]Hale G M,Querry M R.Optical Constants of Water in the 200-nm to 200-microm Wavelength Region[J].Applied Optics,1973,12(3):555-563.
    [22]Toyokawa H,Matsui Y J,Tsuchiya H,et al.Promotive effects of far-infrared ray on full-thickness skin wound healing in rats[J].Experimental Biology&Medicine,2003,228(6):724-729.
    [23]Bagnato G L,Miceli G,Atteritano M,et al.Far infrared emitting plaster in knee osteoarthritis:a single blinded,randomised clinical trial[J].Reumatismo,2012,64(6):388-394.
    [24]魏庆堂.远红外线燃料激化装置[P].中国专利:CN02216771.4,2003-03-12.
    [25]陈文,周静,吴稼祺,等.一种低成本燃油活化助燃红外辐射材料及其制备方法[P].中国专利:CNl01298549,2008-11-05.
    [26]Liang J,Zhu D,Meng J,et al.Performance and application of far infrared rays emitted from rare earth mineral composite materials[J].Nanosci Nanotechnol,2008,8(3):1203-1210.
    [27]Wang F,Liang J,Tang Q,et al.Preparation and far infrared emission properties of natural sepiolite nanofibers[J].Nanosci Nanotechnol,2010,10(3):2017-2022
    [28]Meng J,Jin W,Liang J,et al.Effects of particle size on far infrared emission properties of tourmaline superfine powders[J].Nanosci Nanotechnol.2010,10(3):2083-2087.
    [29]Fuse T,Taki M.Nonthermogenic effect of far-infrared radiation with a wavelength of 100 gm on biological organisms(in Japanese)[J].Sekigaisen Gijutsu,1987:12:27-34.
    [30]李红涛,刘建学.高效远红外辐射陶瓷的研究现状及应用[J].现代陶瓷技术,2005,26(2):24-27.
    [31]祁洪飞,梁金生,梁广川,等.远红外功能陶瓷的防污性能研究[J].中国陶瓷工业,2003,10(5):20-23
    [32]高鸿锦,卢为琴,成岱.有机化合物的红外发射光谱[J].光谱学与光谱分析,1987,7(3):26-32.
    [33]王霏,刘曦,郑海飞,等.俯冲带温度条件下橄榄石中硅氧四面体的非谐振动:透射红外光谱研究[J].岩石学报,2015,31(7):1891-1900.
    [34]闻辂.矿物红外光谱学[M].重庆:重庆大学出版社,1988.
    [35]Burns R G,Strens R G.Infrared study of the hydroxyl bands in clinoamphiboles[J].Science,1966,153(3738):890.
    [36]彭文世.矿物红外光谱图集[M].北京:科学出版社,1983.
    [37]Yariv S.The Relationship between the I.R.Spectra of Serpentines and Their Structures[J].Clays&Clay Minerals,1975,23(2):145-152.
    [38]刘高魁,彭文世.长石的红外光谱及其在测定硅铝有序度上的应用[J].地质地球化学,1979(11):31-37.
    [39]Farmer V C.The infrared spectra of minerals[Z].Mineralogical Society Monograph,1974.
    [40]King P L,Ramsey M S,McMillan P F,et al.Laboratory Fourier Transform infrared spectroscopy methods for geologic samples[J].American Mineralogist,2004,62(6):57-91.
    [41]Christensen P R,Bandfield J L,Hamilton V E,et al.A thermal emission spectral library of rock-forming minerals[Z].The Victory of the Gospel:Morgan&Scott,2000:9735-9739.
    [42]Keller W D,Pickett E E.Absorption of Infrared Radiation by Clay Minerals[J].American Journal of Science,1950,248(4):264-273.
    [43]Farmer V C.The layer silicates[G]//Farmer V C[A].The Infrared Spectra of Minerals[C].London:Mineralogical Society,1974:331-363
    [44]Stubican V,Roy R.Isomorphous substitution and infrared spectra of the layer lattice silicates[J].Am Mineral,1961,46:32-51.
    [45]Moenke H H W.Vibrational spectra and the crystal-chemical classification of minerals[G]//Farmer V C.The Infrared Spectra of Minerals.London:Mineralogical Society,1974:111-118.
    [46]Madejova J,Komadel P.Baseline studies of the Clay Minerals Society source clays:infrared methods[J].Clay Clay Miner,2001,49(5):410-432.
    [47]Keeling J L,Raven M D,Gates W P.Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine,south Australia[J].Clay Clay Miner,2000,48(5):537-548.
    [48]卓建英.岩石矿物热红外光谱特性与光谱解混实验研究[D].沈阳:东北大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700