碳源添加方式对循环水养殖系统中微生物悬浮生长反应器水处理的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of feeding methods of carbon sources on the water treatment of suspended growth reactors in a recirculating aquaculture system
  • 作者:刘文畅 ; 谭洪新 ; 罗国芝 ; 陈伟 ; 张南南 ; 于永霞 ; 姚妙兰 ; PIMPRON ; Pronapinyakun
  • 英文作者:LIU Wenchang;TAN Hongxin;LUO Guozhi;CHEN Wei;ZHANG Nannan;YU Yongxia;YAO Miaolan;PIMPRON Pronapinyakun;Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University;Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs,Shanghai Ocean University;National Demonstration Center for Experimental Fisheries Science Education,Shanghai Ocean University;
  • 关键词:碳源添加方式 ; 微生物悬浮生长反应器 ; 循环水养殖系统 ; 水处理
  • 英文关键词:feeding methods of carbon resource;;microorganism suspended growth reactors;;recirculating aquaculture system;;water treatment
  • 中文刊名:SCKX
  • 英文刊名:Journal of Fisheries of China
  • 机构:上海海洋大学上海水产养殖工程技术研究中心;上海海洋大学农业农村部淡水水产种质资源重点实验室;上海海洋大学水产科学国家级实验教学示范中心;
  • 出版日期:2019-05-09 09:59
  • 出版单位:水产学报
  • 年:2019
  • 期:v.43
  • 基金:国家重点研发计划项目(2017YFD0701700)~~
  • 语种:中文;
  • 页:SCKX201908011
  • 页数:10
  • CN:08
  • ISSN:31-1283/S
  • 分类号:110-119
摘要
采用中试规模的循环水养殖系统,对比研究碳源连续添加的微生物悬浮生长反应器(SGR-Con)和碳源分次添加反应器(SGR-Sev)的水处理效果。典型反应周期内的溶解性有机碳浓度变化,SGR-Con反应区处于较高的稳定水平,SGR-Sev在反应周期的第0小时至碳源瞬时添加时快速上升至SGR-Con的水平,并且在反应周期的第4小时以后降至较低的稳定水平。实验期间,SGR-Sev反应区和沉淀区的溶解氧含量分别显著高于SGRCon的反应区和沉淀区;2个反应器的反应区pH无显著差异,沉淀区pH在2个反应器之间亦无显著差异。碳源分次添加的方式显著提高了反应器的脱氮效果,SGR-Sev对硝氮和总氮的去除率、出水碱度分别可达63.91%±14.31%、64.07%±12.11%和(278.18±80.33)mg/L。相较于SGR-Con,SGR-Sev的出水总氨氮和亚硝氮浓度较高。反应器采用碳源分次添加的方式可使絮团具有良好的沉降性能。研究表明,微生物悬浮生长反应器宜采用碳源分次添加的方式。
        A suspended growth reactor under continuous carbon resource feeding method(SGR-Con) and another under several steps carbon resource feeding method(SGR-Sev) were operated in a pilot-scale recirculating aquaculture system to compare their water treatment efficiency. It indicated that the concentrations of dissolved organic carbon in the reaction zone of SGR-Con was at a high and stable level, while that in SGR-Sev firstly increased to the same level of SGR-Con during the 0 h in cycle to the instantaneously carbon feeding time and it subsequently decreased to a lower and stable level after 4 h in cycle. Dissolved oxygen in the reaction zone of SGR-Sev, as well as the settling zone was significantly higher than that in SGR-Con. The pH in the reaction zone between different reactors had no significant difference, and it was same in settling zone. Several steps carbon resource feeding method significantly increased the nitrogen removal of reactor. Overall the experimental period,the removal rate of nitrate and total nitrogen in SGR-Sev could be 63.91%±14.31% and 64.07%±12.11%,respectively. Besides, alkalinity in the effluent of SGR-Sev was(278.18±80.33) mg/L. SGR-Sev was favorable to achieve good settling performance of bio-flocs. However, the concentrations of total ammonia nitrogen and nitrite in the effluent of SGR-Sev were higher than those of SGR-Con. In summary, it is better to adopt the several steps carbon resource feeding method for suspended growth reactors.
引文
[1]Crab R,Avnimelech Y,Defoirdt T,et al.Nitrogen removal techniques in aquaculture for a sustainable production[J].Aquaculture,2007,270(1-4):1-14.
    [2]FAO(Food and Agriculture Organization of the United Nation).The state of world fisheries and aquaculture[M].Rome:FAO,2016:18-122.
    [3]Naylor R L,Goldburg R J,Primavera J H,et al.Effect of aquaculture on world fish supplies[J].Nature,2000,405(6790):1017-1024.
    [4]Avnimelech Y.Biofloc technology-a practical guide book[M].2nd ed.Baton Rouge,Louisiana,United States:The Word Aquaculture Society,2012:15-110.
    [5]Hargreaves J A.Photosynthetic suspended-growth systems in aquaculture[J].Aquacultural Engineering,2006,34(3):344-363.
    [6]Azim M E,Little D C.The biofloc technology(BFT)in indoor tanks:water quality,biofloc composition,and growth and welfare of Nile tilapia(Oreochromis niloticus)[J].Aquaculture,2008,283(1-4):29-35.
    [7]Badiola M,Mendiola D,Bostock J.Recirculating aquaculture systems(RAS)analysis:main issues on management and future challenges[J].Aquacultural Engineering,2012,51:26-35.
    [8]van Rijn J.Waste treatment in recirculating aquaculture systems[J].Aquacultural Engineering,2013,53:49-56.
    [9]van Rijn J,Tal Y,Schreier H J.Denitrification in recirculating systems:theory and applications[J].Aquacultural Engineering,2006,34(3):364-376.
    [10]Liu W C,Luo G Z,Chen W,et al.Effect of no carbohydrate addition on water quality,growth performance and microbial community in water-reusing biofloc systems for tilapia production under high-density cultivation[J].Aquaculture Research,2018,49(7):2446-2454.
    [11]Ray A J,Lotz J M.Comparing a chemoautotrophicbased biofloc system and three heterotrophic-based systems receiving different carbohydrate sources[J].Aquacultural Engineering,2014,63:54-61.
    [12]Xu W J,Morris T C,Samocha T M.Effects of C/N ratio on biofloc development,water quality,and performance of Litopenaeus vannamei juveniles in a biofloc-based,high-density,zero-exchange,outdoor tank system[J].Aquaculture,2016,453:169-175.
    [13]谭洪新,庞云,王潮辉,等.驯化硝化型生物絮体养殖南美白对虾的初步研究[J].上海海洋大学学报,2017,26(4):490-500.Tan H X,Pang Y,Wang C H,et al.Preliminary study on domesticating nitrifying bio-flocs to rear Litopenaeus vannamei[J].Journal of Shanghai Ocean University,2017,26(4):490-500(in Chinese).
    [14]Liu W C,Luo G Z,Tan H X,et al.Effects of sludge retention time on water quality and bioflocs yield,nutritional composition,apparent digestibility coefficients treating recirculating aquaculture system effluent in sequencing batch reactor[J].Aquacultural Engineering,2016,72-73:58-64.
    [15]Schneider O,Sereti V,Eding E H,et al.Heterotrophic bacterial production on solid fish waste:TAN and nitrate as nitrogen source under practical RAS conditions[J].Bioresource Technology,2007,98(10):1924-1930.
    [16]刘文畅,罗国芝,谭洪新,等.生物絮凝反应器对中试循环水养殖系统中污水的处理效果[J].农业工程学报,2016,32(8):184-191.Liu W C,Luo G Z,Tan H X,et al.Treatment efficiency of wastewater in pilot test of biofloc reactor in recirculating aquaculture systems[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(8):184-191(in Chinese).
    [17]Ciggin A S,Orhon D,Capitani D,et al.Aerobic metabolism of mixed carbon sources in sequencing batch reactor under pulse and continuous feeding[J].Bioresource Technology,2013,129:118-126.
    [18]张兰河,丘晓春,张宇,等.碳源投加方式对SBR工艺脱氮速率的影响[J].环境工程学报,2015,9(2):731-736.Zhang L H,Qiu X C,Zhang Y,et al.Effect of different adding methods of carbon sources on denitrification rate[J].Chinese Journal of Environmental Engineering,2015,9(2):731-736(in Chinese).
    [19]张万友,张兰河,杨涛,等.不同有机碳源对SBR工艺同步硝化反硝化影响[J].化工进展,2010,29(12):2395-2399.Zhang W Y,Zhang L H,Yang T,et al.Effects of organic carbon on simultaneous nitrification and denitrification in sequencing batch reactor[J].Chemical Industry and Engineering Progress,2010,29(12):2395-2399(in Chinese).
    [20]Avnimelech Y.Carbon/nitrogen ratio as a control element in aquaculture systems[J].Aquaculture,1999,176(3-4):227-235.
    [21]国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.State Environmental Protection Administration.Water and wastewater monitoring analysis method[M].4th ed.Beijing:China Environmental Science Press,2002(in Chinese).
    [22]Chu C P,Lee D J.Multiscale structures of biological flocs[J].Chemical Engineering Science,2004,59(8-9):1875-1883.
    [23]Pochana K,Keller J,Lant P.Model development for simultaneous nitrification and denitrification[J].Water Science and Technology,1999,39(1):235-243.
    [24]ToràJ A,Baeza J A,Carrera J,et al.Denitritation of a high-strength nitrite wastewater in a sequencing batch reactor using different organic carbon sources[J].Chemical Engineering Journal,2011,172(2-3):994-998.
    [25]Karanasios K A,Vasiliadou I A,Tekerlekopoulou A G,et al.Effect of C/N ratio and support material on heterotrophic denitrification of potable water in biofilters using sugar as carbon source[J].International Biodeterioration&Biodegradation,2016,111:62-73.
    [26]Ge S J,Peng Y Z,Wang S Y,et al.Nitrite accumulation under constant temperature in anoxic denitrification process:the effects of carbon sources and COD/NO-3N[J].Bioresource Technology,2012,114:137-143.
    [27]Guo J H,Peng Y Z,Yang X,et al.Changes in the microbial community structure of filaments and floc formers in response to various carbon sources and feeding patterns[J].Applied Microbiology and Biotechnology,2014,98(17):7633-7644.
    [28]王凤祥,龙腾锐,郭劲松.活性污泥膨胀的影响因素及调控措施研究[J].重庆建筑大学学报,2007,29(1):117-121.Wang F X,Long T R,Guo J S.Study on factors affecting the activated sludge bulking and its control[J].Journal of Chongqing Jianzhu University,2007,29(1):117-121(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700