微波辐照快速合成Pd/石墨烯纳米复合材料及其对甲醇氧化的电催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rapid Synthesis of Palladium/Graphene Nanocomposites via Microwave Irradiation and Their Electrocatalytic Oxidation of Methanol
  • 作者:杨木泉 ; 张旋 ; 颜悦
  • 英文作者:YANG Mu-Quan;ZHANG Xuan;YAN Yue;Affiliation Beijing Institute of Aeronautical Materials,Beijing Engineering Research Centre of Advanced Structure Transparencies for the Modern Traffic System;
  • 关键词:微波辐照 ; 石墨烯复合材料 ; 电催化 ; 甲醇氧化
  • 英文关键词:Microwave irradiation;;Graphene nanocomposites;;Electrocatalysis;;Methanol oxidation
  • 中文刊名:FXHX
  • 英文刊名:Chinese Journal of Analytical Chemistry
  • 机构:北京市先进运载系统结构透明件工程技术研究中心北京航空材料研究院;
  • 出版日期:2018-12-12
  • 出版单位:分析化学
  • 年:2018
  • 期:v.46
  • 基金:国家自然科学基金项目(No.51702305)资助~~
  • 语种:中文;
  • 页:FXHX201812018
  • 页数:7
  • CN:12
  • ISSN:22-1125/O6
  • 分类号:127-133
摘要
通过微波辅助"一锅合成"的方法,利用环境友好、价格低廉的表没食子儿茶素(EGCG)为还原剂,快速制备了钯/石墨烯(Pd/GN)纳米复合材料,通过控制反应物比例和微波辐照时间对负载在石墨烯上的Pd纳米粒子的尺寸及负载量进行调控。实验结果表明,此Pd/GN纳米复合结构中,Pd纳米粒子均匀分散在石墨烯表面,当氧化石墨(GO)添加量为0.25 m L、微波辐照时间为1 min时,Pd纳米粒子的平均粒径约为10 nm。电化学测试结果表明,Pd/GN复合材料催化剂的电化学活性面积(ECSA)达到60. 5 m~2/g,为商用Pd/C催化剂ECSA(30.7 m~2/g)的1.97倍。另外,在碱性条件下,通过循环伏安法(CV)和计时电流法(CA)研究了Pd/GN的电化学催化甲醇氧化过程,结果表明,与商业Pd/C催化剂相比,Pd/GN催化剂的电催化活性和稳定性都大大提高,当催化剂负载量为15.5μg/cm2时,氧化电流密度峰值达到7.95 mA/cm~2。合成的Pd/GN材料具有优异电催化性能,在甲醇燃料电池领域有良好的应用前景。
        Palladium/graphene nanocomposites (Pd/GN) were synthesized through a rapid,microwave irradiation,"one pot"method with epigallocatechin gallate (EGCG) as a reducing agent. The loading amount and size of Pd nanoparticles in Pd/Graphene nanocomposites could be controlled by the irradiation time and the ratio of the graphite oxide (GO) and H_2PdCl_4. Results showed that Pd nanoparticles were well dispersed on the surface of graphene in Pd/GN nanocomposite. When the additive amount of graphene oxide (GO) was 0.25 mL and the microwave irradiation time was 1 min,the size of Pd nanoparticles was about 10 nm. The electro-catalytic activity of the as-prepared Pd/GN towards the oxidation of methanol was studied by cyclic voltammetry (CV) and chronoamperometry (CA) methods. The electrochemical active area (ECSA) value of Pd/GN nanocomposite catalysts was about 60. 5 m~2/g,which was 1. 97 times higher than that of the commercial Pd/C catalyst (30. 7 m~2/g). The peak current density on the Pd/GN catalyst for methanol oxidation was much larger than that of Pd/C catalyst in the alkaline conditions. When the loading amount of the Pd/GN catalyst was about 15. 5 μg/cm~2,the value of the oxidation peak current density reached 7.95 m A/cm~2. All the experimental results indicated that the Pd/GN catalyst significantly enhanced catalytic activity and stability than the commercial Pd/C catalyst.
引文
1 Mcnicol B D,Rand D A J,Williams K R.J.Power Sources,1999,83(1-2):15-31
    2 Wang C Y.Chem.Rev.,2004,104(10):4727-4765
    3 Rabissi C,Gazdzicki P,Guétaz L,Escribano S,Grahl-Madsen L,Baricci A,Casalegno A.J.Power Sources,2018,397:361-373
    4 Xu C W,Shen P K,Liu Y L.J.Power Sources,2007,164(2):527-531
    5 Li C L,Sato T,Yamauchi Y.Angew.Chem.Int.Edit.,2013,52(31):8050-8053
    6 Cao Y,Yang Y,Shan Y,Huang Z.ACS Appl.Mater.Interfaces,2016,8(9):5998-6003
    7 Dasdelen Z,Yildiz Y,Eris S,Sen F.Appl.Catal.B,2017,219:511-516
    8 Antolini E,Salgado J R C,Gonzalez E R.J.Electroanal.Chem.,2005,580(1):145-154
    9 Ksar F,Ramos L,Keita B,Nadjo L,Beaunier P,Remita H,Chem.Mater.,2009,21(15):3677-3683
    10 Guo S J,Dong S J,Wang E K.Energy Environ.Sci.,2010,3:1307-1310
    11 Zhang Y W,Chang G H,Liu S,Tian J Q,Wang L,Lu W B,Qin X Y,Sun X P.Catal.Sci.Technol.,2011,1(9):1636-1640
    12 Chang R,Zheng L,Wang C,Yang D,Zhang G,Sun S.Appl.Catal.B,2017,211:205-211
    13 Wang K,Sriphathoorat R,Luo S,Tang M,Du,H,Shen P K.J.Mater.Chem.A,2016,4:13425-13430
    14 Geim A K,Novoselov K S.Nat.Mater.,2007,6:183-191
    15 Park S,Ruoff R S.Nat.Nanotechnol.,2009,4:217-224
    16 Dreyer D R,Park S J,Bielawski C W,Ruoff R S.Chem.Soc.Rev.,2010,39:228-240
    17 Du X,Guo P,Song H H,Chen X H.Electrochim.Acta,2010,55(16):4812-4819
    18 Huang H J,Wang X.J.Mater.Chem.,2012,22:22533-22541
    19 ZHAO Hong-Cai,ZHANG Pu,LI She-Hong,LUO Hong-Xia.Chinese J.Anal.Chem.,2017,45(6):830-836赵鸿彩,张璞,李社红,罗红霞.分析化学,2017,45(6):830-836
    20 TAN Jie,SHI Zhao-Xia,HU Yu-Fei,XIAO Xiao-Hua,LI Gong-Ke.Chinese J.Anal.Chem.,2017,45(12):2011-2017谭杰,史朝霞,胡玉斐,肖小华,李攻科.分析化学,2017,45(12):2011-2017
    21 LI Ying,XU Wen-Kai,LI Ping,ZHU Xiao-Xue,HUANG Yan-Feng,ZHANG Ji-Mei.Chinese J.Anal.Chem.,2018,46(7):1047-1054李颖,徐文凯,李苹,朱小雪,黄艳凤,张纪梅.分析化学,2018,46(7):1047-1054
    22 Raghavendra P,Reddy G V,Sivasubramanian R,Chandana P S,Sarma L S.Chemistry Select,2017,2(35):11762-1177023 Grayfer E D,Kibis L S,Stadnichenko A I,Vilkov O Y,Boronin A I,Slavinskaya E M,Stonkus O A,Fedorov V E.Carbon,2015,89:290-299
    24 MIAO Hui,XIA Juan,JIN Feng,SUN Lin,CUI Yu-Min,LI Hui-Quan,DING Jian.Chinese Journal of Luminescence,2016,37(2):165-173苗慧,夏娟,金凤,孙林,崔玉民,李慧泉,丁建.发光学报,2016,37(2):165-173
    25 JING Tao,DAI Ying,MA Xiao-Juan,HUANG Bai-Biao.Chinese Optic.,2016,9(1):1-15荆涛,戴瑛,马晓娟,黄柏标.中国光学,2016,9(1):1-15
    26 Huang F,Liu H Y,Su D S.Sci.China Mater.,2017,60:1149-1167
    27 Liu M R,Peng C,Yang W K,Guo J J,Zheng Y X,Chen P Q,Huang T T,Xu J.Electrochim.Acta,2015,178:838-84628 Zhang Y T,Chang G,Shu H H,Oyama M,Liu X,He Y B.J.Power Sources,2014,262:279-285
    29 Hummers J W S,Offeman R.J.Am.Chem.Soc.,1958,80(6):1339-1339
    30 Ga J,Liu F,Ma N,Wang Z,Zhang X.Chem.Mater.,2010,22(7):2213-2218
    31 Tung V C,Allen M J,Yang Y,Kaner R B.Nat.Nanotechnol.,2008,4:25-29
    32 Liao R,Tang Z,Lei Y,Guo B.J.Phys.Chem.C,2011,115:20740-20746
    33 Zou M,Zhu H,Wang P,Bao S,Du M,Zhang M.Nano,2014,9(3):1450031

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700