流量与叶片出口宽度对离心血泵溶血性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of flow rate and blade outlet width on hemolytic performance of centrifugal blood pump
  • 作者:胡婉倩 ; 李学敏 ; 徐林 ; 刘继伟 ; 孙皓
  • 英文作者:Hu Wanqian;Li Xuemin;Xu Lin;Liu Jiwei;Sun Hao;China Yangtze Power Co., Ltd.;School of Energy and Power Engineering, Huazhong University of Science and Technology;Central Southern China Electric Power Design Institute;
  • 关键词:心脏移植 ; 溶血 ; 血流动力学 ; 组织工程 ; 离心血泵 ; 溶血现象 ; 运行参数 ; 结构优化 ; 速度系数法 ; 计算流体动力学 ; 切应力 ; 标准溶血值 ; 运动时间
  • 英文关键词:,Heart Transplantation;;Hemolysis;;Hemodynamics;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:中国长江电力股份有限公司;华中科技大学能源与动力工程学院;中南电力设计院有限公司;
  • 出版日期:2019-01-29
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.867
  • 基金:国家重点研发计划“流体机械新型节能与系统智能调控技术”项目(2018YFB0606101)~~
  • 语种:中文;
  • 页:XDKF201910020
  • 页数:7
  • CN:10
  • ISSN:21-1581/R
  • 分类号:111-117
摘要
背景:溶血现象是人工心脏泵设计与研发历程中的一个重要问题,溶血的产生与血细胞在泵内运动时所受剪切力和在泵内的运动时间有关。目的:分析离心血泵不同运行参数及不同结构参数与血细胞在泵内所受剪切力之间的关系。方法:根据速度系数法设计离心血泵的基本结构;分别利用CFturbo、ANSYS ICEM与FLUENT软件建立血泵的三维模型,网格划分与流场模拟,以此研究出最佳的网格划分方法;再根据数值模拟的结果对叶轮出口直径进行修正,最终得到符合人体心脏所需的人工心脏泵。以降低血细胞在心脏泵中所受切应力和运动时间为目的,对离心式人工心脏泵结构参数叶轮入口流量Q(2,3,4,5,6,7L/min)、运行参数叶片出口宽度b2(2.0,2.1,2.2,2.3,2.4,2.5 mm)进行优化设计与分析比较,以期降低溶血现象发生的概率。结果与结论:(1)随着流量的增加,血细胞在血泵内受到的切应力逐渐增加,运动时间逐渐减少。随着流量的增加,血泵内的标准溶血值逐渐减小,血细胞在血泵内受到的损伤越小;当流量取7 L/min时,血泵内标准溶血值最低;(2)随着叶片出口宽度的增大,血液在泵内所受的切应力总体呈下降趋势,血液在泵内的运动时间总体呈现增加趋势;当叶片出口宽度在2.0-2.5 mm范围内,随着叶片出口宽度的增加,血泵内的标准溶血值逐渐减小,血细胞在血泵内受到的损伤越小,当叶片出口宽度为2.5 mm左右时血泵内溶血值最低。
        BACKGROUND: Hemolysis is an important problem in the design and development of artificial heart pumps. Hemolysis is associated with the shear force of blood cells in the pump and the movement time in the pump. OBJECTIVE: To analyze the relationship between the operating parameters of blood pump (flow rate of blood pump), the structure of blood pump (outlet width of blade) and the shear stress of blood cells in artificial heart pump. METHODS: The basic structure of the centrifugal blood pump was designed according to the velocity coefficient method. The three-dimensional model of the blood pump, mesh division and flow field simulation were established by using CFturbo, ANSYS ICEM and FLUENT software respectively to study the best mesh division method. The results of the numerical simulation corrected the diameter of the impeller outlet to finally obtain an artificial heart pump meeting the needs of the human heart. In order to reduce the shear stress and movement time of blood cells in the heart pump, the optimal design and analysis of the impeller inlet flow rate Q (2, 3, 4, 5, 6, 7 L/min) and the operating parameter blade outlet width b2 (2.0, 2.1, 2.2, 2.3, 2.4, 2.5 mm) of the centrifugal artificial heart pump were designed to reduce the probability of hemolysis. RESULTS AND CONCLUSION:(1) As the flow rate increased, the shear stress of the blood cells in the blood pump gradually increased, and the movement time gradually decreased. As the flow rate increased, the standard hemolysis value in the blood pump gradually decreased, and the damage to the blood cells in the blood pump alleviated. When the flow rate was 7 L/min, the standard hemolysis value in the blood pump was the lowest.(2) With the increase of blade outlet width, the shear stress of the blood in the pump decreased, and the movement time of the blood in the pump increased. When the blade outlet width was 2.0-2.5 mm, the hemolysis value in the blood pump decreased with the increase of the blade outlet width. When the blade outlet width was about 2.5 mm, the hemolysis value in the blood pump was the lowest.
引文
[1]陈伟伟,高润霖,刘力生,等.中国心血管病报告2017概要[J].中国循环杂志,2018,33(1):1-8.
    [2]宋云虎,胡盛寿,董念国,等.中国心脏移植现状[J].中国循环杂志,2016,31(z1):77-77.
    [3]Isomura T,Fukada Y,Miyazaki T,et al.Posterior ventricular restoration treatment for heart failure:a review,past,present and future aspects.Gen Thorac Cardiovasc Surg.2017;65(3):1-7.
    [4]张岩,孙寒松,胡盛寿.左心室辅助血泵及其临床应用研究进展[J].中国胸心血管外科临床杂志,2017,24(2):152-155.
    [5]Muslem R,Caliskan K,Leebeek FWG.Acquired coagulopathy in patients with Left Ventricular Assist Devices.J Thromb Haemost.2018;16(3):429-440.
    [6]寿宸,郭勇君,苏磊,等.基于快速溶血预估模型的离心血泵叶轮特性数值分析[J].生物医学工程学杂志,2014,31(6):1260-1264.
    [7]王芳群.应用CFD技术探明叶轮设计对人工心脏血泵内流场及切应力分布的影响[D].镇江:江苏大学,2003.
    [8]陈松松.基于溶血估算的离心血泵设计[D].杭州:浙江大学,2011.
    [9]李卫东,姚奇,杜建军,等.基于CFD的液悬浮人工心脏泵叶轮入口优化分析[J].北京生物医学工程,2017,36(1):21-28.
    [10]Takami Y,Nakazawa T,Makinouchi K,et al.Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump.Artif Organs.1997;21(7):686-690.
    [11]Umezu M,Yamada T,Fujimasu H,et al.Effects of surface roughness on mechanical hemolysis.Artif Organs.1996;20(5):575-578.
    [12]Heck ML,Yen A,Snyder TA,et al.Flow-Field Simulations and Hemolysis Estimates for the Food and Drug Administration Critical Path Initiative Centrifugal Blood Pump.Artif Organs.2017;41(10):129-140.
    [13]da Silva C,da Silva BU,Leme J,et al.In Vivo Evaluation of Centrifugal Blood Pump for Cardiopulmonary Bypass-Spiral Pump.Artif Organs.2013;37(11):954-957.
    [14]Chiu WC,Slepian MJ,Bluestein D.Thrombus Formation Patterns in the HeartMate Ⅱ VAD-Clinical Observations Can Be Predicted by Numerical Simulations.ASAIO J.2014;60(2):237-240.
    [15]Wernicke JT,Meier D,Mizuguchi K,et al.A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement.Artif Organs.1995;19(2):161-177.
    [16]Reich HJ,Morgan J,Arabia F,et al.Comparative analysis of von Willebrand Factor profiles after implantation of left ventricular assist device and total artificial heart.J Thromb Haemost.2017;15(8):1620-1624.
    [17]Akamatsu T,Nakazeki T,Itoh H.Centrifugal blood pump with a magnetically suspended impeller.Artif Organs.1992;16(3):305-308.
    [18]Wu J,Paden BE,Borovetz HS,et al.Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.Artif Organs.2010;34(5):402-411.
    [19]Daisuke S,Tomotaka M,Ryo K,et al.Real-Time Observation of Thrombus Growth Process in an Impeller of a Hydrodynamically Levitated Centrifugal Blood Pump by Near-Infrared Hyperspectral Imaging.Artif Organs.2015;39(8):714-719.
    [20]Carpentier A,Latrémouille C,Cholley B,et al.First clinical use of a bioprosthetic total artificial heart:report of two cases.Lancet.2015;386(10003):1556-1563.
    [21]Song G,Chua LP,Lim TM.Numerical Study of a Bio‐Centrifugal Blood Pump With Straight Impeller Blade Profiles.Artif Organs.2010;34(2):98-104.
    [22]Leme J,Silva C,Fonseca J,et al.Centrifugal blood pump for temporary ventricular assist devices with low priming and ceramic bearings.Artif Organs.2013;37(11):942-945.
    [23]?zalp F,Bhagra S,Bhagra C,et al.Four-year outcomes with third-generation centrifugal left ventricular assist devices in an era of restricted transplantation.Eur J Cardiothorac Surg.2014;46(3):35-40.
    [24]Miller JR,Lawrance CP,Silvestry SC.Current Options and Practices in Long-Term Ventricular Assist Devices.Curr Surg Rep.2014;2(5):1-9.
    [25]Velicki L,Frazier OH.Long-term ventricular assist devices in current clinical practice.Vojnosanit Pregl.2013;70(7):679.
    [26]Sun P,Leng W,Zhang CS,et al.ALE Method for a Rotating Structure Immersed in the Fluid and Its Application to the Artificial Heart Pump in Hemodynamics[C]//International Conference on Computational Science.Springer,Cham,2018:9-23.
    [27]Bente T,Bastian B,Jens S,et al.Numerical Analysis of Blood Damage Potential of the eart Mate Ⅱ and Heart Ware HVADRotary Blood Pumps.Artif Organs.2015;39(8):651-659.
    [28]Apel J,Paul R,Klaus S,et al.Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.Artif Organs.2001;25(5):341-347.
    [29]Garon A,Farinas MI.Fast Three‐dimensional Numerical Hemolysis Approximation.Artif Organs.2004;28(11):1016-1025.
    [30]谢雄,谭建平,刘云龙.轴流式血泵流体特性CFD研究[J].工程设计学报,2014,21(2):154-160.
    [31]牛彦文.人工心脏泵叶轮结构参数优化及有限元分析[D].哈尔滨:哈尔滨工业大学,2016.
    [32]Sakota R,Lodi CA,Sconziano SA,et al.In Vitro Comparative Assessment of Mechanical Blood Damage Induced by Different Hemodialysis Treatments.Artif Organs.2015;39(12):1015-1023.
    [33]王立群.我国开展心衰终末期治疗新技术(127)[J].临床心电学杂志,2018,27(1):73.
    [34]McIlvennan CK,Magid KH,Ambardekar AV,et al.Clinical outcomes after continuous-flow left ventricular assist device:a systematic review.Heart Fail.2014;7(6):1003-1013.
    [35]Schmitto JD,Hanke JS,Rojas SV,et al.First implantation in man of a new magnetically levitated left ventricular assist device (HeartMate Ⅲ).J Heart Lung Transplant.2015;34(6):858-860.
    [36]胡盛寿.心力衰竭外科治疗现状与进展[J].中国循环杂志,2016,31(3):209-213.
    [37]李卫东.离心式人工心脏泵血流动力学特性分析与优化研究[D].哈尔滨:哈尔滨工业大学,2016.
    [38]Szwast M,Moskal A,Piatkiewicz W.A new method for assessing haemolysis in a rotary blood pump using large eddy simulations(LES).Chem Proc Eng.2017;38(2):231-239.
    [39]Telyshev D,Denisov M,Pugovkin A,et al.The Progress in the Novel Pediatric Rotary Blood Pump Sputnik Development.Artif Organs.2018;42(4):432-443.
    [40]Murashige T,Kosaka R,Sakota D,et al.Evaluation of a spiral groove geometry for improvement of hemolysis level in a hydrodynamically levitated centrifugal blood pump.Artif Organs.2015;39(8):710-714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700