聚醚醚酮3D打印成形工艺的仿真和实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Process Simulation and Experiments for PEEK 3D Printing Technology
  • 作者:史长春 ; 胡镔 ; 陈定方 ; 陈蓉 ; 单斌
  • 英文作者:SHI Changchun;HU Bin;CHEN Dingfang;CHEN Rong;SHAN Bin;School of Materials Science and Engineering,Huazhong University of Science and Technology;Intelligent Manufacture and Control Institute,Wuhan Institute of Technology;HUST-Wuxi Research Institute;
  • 关键词:聚醚醚酮 ; 快速成形 ; 模拟仿真 ; 工艺实验
  • 英文关键词:polyethoretheretherketone(PEEK);;rapid prototyping(RP);;analog simulation;;process experiment
  • 中文刊名:ZGJX
  • 英文刊名:China Mechanical Engineering
  • 机构:华中科技大学材料科学与工程学院;武汉理工大学智能制造与控制研究所;华中科技大学无锡研究院;
  • 出版日期:2018-05-15 15:17
  • 出版单位:中国机械工程
  • 年:2018
  • 期:v.29;No.497
  • 基金:教育部创新团队发展计划资助项目(IRT13017)
  • 语种:中文;
  • 页:ZGJX201817016
  • 页数:7
  • CN:17
  • ISSN:42-1294/TH
  • 分类号:107-112+118
摘要
为解决高性能医用聚醚醚酮(polyethoretheretherketone,PEEK)零件复杂结构难以加工的问题,采用基于熔融沉积原理的3D打印方式,辅以高温成形腔体结构,通过模拟仿真和工艺实验,开展PEEK的快速成形系统工艺研究。仿真结果表明:采用接近PEEK玻璃化温度的高温成形腔体环境,可以明显地减小PEEK试样的翘曲变形;采用较小内径的喷嘴,有利于PEEK丝材的熔化和熔融挤出稳定性。实验数据表明:喷嘴内径0.4 mm和打印层厚0.1 mm的设置条件下,PEEK试样的最高平均拉伸强度可达到74.74 MPa,接近传统注塑成形零件的拉伸性能。
        The medical PEEK components with high performance were difficult to process because they displayed intricate structure. To deal with the problems,the research of PEEK RP was conducted based on the fused deposition modeling(FDM)3 D printing technology. In particular,the design of high temperature chamber,analog simulation and process experiments were carried out accordingly. The simulation results show that the warping deformation phenomenon of PEEK sample may be greatly suppressed obviously through the applications of the prototyping chamber with the temperature close to the glass transition temperature of PEEK. Moreover,PEEK filament may melt uniformly through the applications of the nozzles with smaller diameters,which makes sure that the PEEK filament span steadily.The experimental data show that the highest average tensile strength of PEEK sample achieves about74.74 MPa when using the nozzle diameter of 4 mm and the layer thickness of 0.1 mm during the PEEK3 D printing processes. The values are close to the tensile strength of the PEEK sample processed through the traditional injection molding.
引文
[1]颜永年,熊卓,张人佶,等.生物制造工程的原理与方法[J].清华大学学报(自然科学版),2005,45(2):145-150.YAN Yongnian,XIONG Zhuo,ZHANG Renji,et al.Principles of Organism Manufacturing Engineering[J].Journal of Tsinghua University(Sci.&Tech.),2005,45(2):145-150.
    [2]张志宏,刘志礼,高志增,等.骨修复替代材料修复骨缺损的选择与应用[J].中国组织工程研究,2012,16(52):9836-9843.ZHANG Zhihong,LIU Zhili,GAO Zhizeng.et al.Selection and Application of Bone Substitute Materials for Repair of Bone Defects[J].Chinese Journal of Tissue Engineering Research,2012,16(52):9836-9843.
    [3]宗倩颖,叶霖,张爱英,等.聚醚醚酮及其复合材料在生物医用领域的应用[J].合成树脂及塑料,2016,33(3):93-96.ZONG Qianying,YE Lin,ZHANG Aiying,et al.Applications of Polyetheretherketone and Its Composites in Biomedical Field[J].China Synthetic Resin and Plastics,2016,33(3):93-96.
    [4]MARTíNEZ J,DIéGUEZ J L,ARES E,et al.Comparative between FEM Models for FDM Parts and Their Approach to a Real Mechanical Behaviour[J].Procedia Engineering,2013,63:878-884.
    [5]KURTZ S M,DEVINE J N.PEEK Biomaterials in Trauma,Or-thopedic,and Spinal Implants[J].Biomaterials,2007,28(32):4845-4869.
    [6]张钰.聚醚醚酮仿生人工骨3D打印热力学仿真及实验研究[D].长春:吉林大学,2014.ZHANG Yu.Thermodynamic Simulation and Experiment of 3D Printing of Bionic Artificial Bone with Polyetheretherketone(PEEK)[D].Changchun:Jilin University,2014.
    [7]卢秉恒,李涤尘.增材制造(3D打印)技术发展[J].机械制造与自动化,2013,42(4):1-4.LU Bingheng,LI Dichen.Development of the Additive Manufacturing(3D Printing)Technology[J].Machine Building&Automation,2013,42(4):1-4.
    [8]UPCRAFT S,FLETCHER R.The Rapid Prototyping Technologies[J].Assembly Automation,2003,23(4):318-330.
    [9]RENGIER F,MEHNDIRATTA A,TENGG-KOBLIGK H V,et al.3D Printing Based on Imaging Data:Review of Medical Applications[J].International Journal of Computer Assisted Radiology&Surgery,2010,5(4):335-41.
    [10]IULIANO L,VIOLANTE M G,GATTO A,et al.3D Printing Technique Applied to Rapid Casting[J].Rapid Prototyping Journal,2007,13(3):148-155.
    [11]WU Wenzheng,GENG Peng,ZHAO Ji,et al.Manufacture and Thermal Deformation Analysis of Semicrystalline Polymer Polyether ether Ketone by3D Printing[J].Material Research Innovations,2014,18(S5):S12-S16.
    [12]WU Wenzheng,GENG Peng,LI Guiwei,et al.Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-printed PEEK and a Comparative Mechanical Study between PEEK and ABS[J].Materials,2015,8(9):5834-5846.
    [13]赵帝.仿生人工骨3D打印流场仿真分析及试件力学性能研究[D].长春:吉林大学,2014.ZHAO Di.The Fluid Analysis of Biological Artificial Bone Manufactured by 3D Printing and the Mechanical Property Study of Printing Parts[D].Changchun:Jilin University,2014.
    [14]赵峰,李涤尘,靳忠民,等.PEEK熔融沉积成形温度对零件拉伸性能的影响[J].电加工与模具,2015(5):43-47.ZHAO Feng,LI Dichen,JIN Zhongmin,et al.Effect of PEEK Fused Deposition Modeling Temperature on Tensile Properties of Parts[J].Electromachining&Mould,2015(5):43-47.
    [15]VAEZI M,YANG S.Extrusion-based Additive Manufacturing of PEEK for Biomedical Applications[J].Virtual&Physical Prototyping,2015,10(3):1-13.
    [16]郑宏飞.热力学与传热学基础[M].北京:科学出版社,2016.ZHENG Hongfei.Thermodynamics and Heat Transfer Basis[M].Beijing:Science Press,2016.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700