耦合太阳能辅热的AA-CAES系统参数分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Parameter Analysis of an AA-CAES System Coupled with Solar Auxiliary Heating
  • 作者:李鹏 ; 安鹏 ; 韩中合 ; 梅中恺 ; 贾晓强
  • 英文作者:LI Peng;AN Peng;HAN Zhonghe;MEI Zhongkai;JIA Xiaoqiang;MOE's Key Lab of Condition Monitoring and Control for Power Plant Equipment, North China Electric Power University;North China Electric Power Design Institute Co., Ltd.of China Power Engineering Consulting Group;
  • 关键词:AA-CAES ; 太阳能辅热 ; 压缩机级数 ; 膨胀机级数 ; 换热器效能
  • 英文关键词:AA-CAES;;solar auxiliary heating;;number of compressor stages;;number of turbine stages;;heat exchanger effectiveness
  • 中文刊名:DONG
  • 英文刊名:Journal of Chinese Society of Power Engineering
  • 机构:华北电力大学电站设备状态监测与控制教育部重点实验室;中国电力工程顾问集团华北电力设计院有限公司;
  • 出版日期:2019-07-15
  • 出版单位:动力工程学报
  • 年:2019
  • 期:v.39;No.295
  • 基金:河北省自然科学基金资助项目(E2018502059);; 中央高校基本科研业务费专项资金资助项目(2017XS120)
  • 语种:中文;
  • 页:DONG201907011
  • 页数:7
  • CN:07
  • ISSN:31-2041/TK
  • 分类号:80-86
摘要
为提高传统先进绝热压缩空气储能(AA-CAES)系统性能,在原系统上耦合了太阳能辅热子系统,并对耦合太阳能辅热的AA-CAES系统性能进行了研究。结果表明:在相同压缩机级数下,冷罐和热罐温度均随膨胀机级数的增加缓慢升高;在相同膨胀机级数下,冷罐和热罐温度随压缩机级数的增加逐渐降低;当压缩机与膨胀机级数相等时,系统储能效率、储能密度和耦合储能效率均比二者级数不等时更高;随着换热器效能的提高,系统冷罐和热罐温度升高、膨胀功和压缩功增大,而系统储能效率和耦合储能效率先提高后降低。
        To improve the performance of an advanced adiabatic compressed air energy storage(AA-CAES) system, a solar auxiliary heating subsystem was coupled to the original system, and subsequently, a study was conducted on the performance of the newly coupled system. Results show that at a fixed number of compressor stages, the temperature of cold and hot tanks increases slowly with the rising number of turbine stages, while at a fixed number of turbine stages, the temperature of cold and hot tanks decreases with the rising number of compressor stages. When the number of compressor stages is equal to that of turbine stages, the energy storage efficiency, the energy storage density and the coupled energy storage efficiency of the system would be higher than the case the two numbers are not equal. With the enhancement of heat exchanger effectiveness, the temperature of cold and hot tanks, the expansion work and the compression work increase, while the energy storage efficiency and the coupled energy storage efficiency of the system increase first and then decrease.
引文
[1] MAZLOUM Y,SAYAH H,NEMER M.Exergy analysis and exergo-economic optimization of a constant-pressure adiabatic compressed air energy storage system[J].Journal of Energy Storage,2017,14:192-202.
    [2] 梅生伟,李瑞,陈来军,等.先进绝热压缩空气储能技术研究进展及展望[J].中国电机工程学报,2018,38(10):2893-2907.MEI Shengwei,LI Rui,CHEN Laijun,et al.An overview and outlook on advanced adiabatic compressed air energy storage technique[J].Proceedings of the CSEE,2018,38(10):2893-2907.
    [3] ODUKOMAIYA A,ABU-HEIBA A,GLUESENKAMP K R,et al.Thermal analysis of near-isothermal compressed gas energy storage system[J].Applied Energy,2016,179:948-960.
    [4] 李姚旺,苗世洪,尹斌鑫,等.考虑先进绝热压缩空气储能电站备用特性的电力系统优化调度策略[J].中国电机工程学报,2018,29(18):5392-5404.LI Yaowang,MIAO Shihong,YIN Binxin,et al.Power system optimal scheduling strategy considering reserve characteristics of advanced adiabatic compressed air energy storage plant[J].Proceedings of the CSEE,2018,29(18):5392-5404.
    [5] ZHANG Yuan,YANG Ke,LI Xuemei,et al.The thermodynamic effect of air storage chamber model on advanced adiabatic compressed air energy storage system[J].Renewable Energy,2013,57:469-478.
    [6] JUBEH N M,NAJJAR Y S H.Green solution for power generation by adoption of adiabatic CAES system[J].Applied Thermal Engineering,2012,44:85-89.
    [7] 韩中合,周权,王营营,等.先进绝热压缩空气储能 (AA-CAES) 系统一种结构优化方案[J].太阳能学报,2016,37(3):629-635.HAN Zhonghe,ZHOU Quan,WANG Yingying,et al.Analysis of two sorts of configurations of AA-CAES system[J].Acta Energiae Solaris Sinica,2016,37(3):629-635.
    [8] 杨承,王旭升,张驰,等.太阳能与压缩空气耦合储能的燃气轮机 CCHP 系统特性[J].中国电机工程学报,2017,37(18):5350-5358.YANG Cheng,WANG Xusheng,ZHANG Chi,et al.Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage[J].Proceedings of the CSEE,2017,37(18):5350-5358.
    [9] YANG Ke,ZHANG Yuan,LI Xuemei,et al.Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system[J].Energy Conversion and Management,2014,86:1031-1044.
    [10] TESSIER M J,FLOROS M C,BOUZIDI L,et al.Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials[J].Energy,2016,106:528-534.
    [11] 何青,刘辉,张军良,等.基于正交设计的压缩空气储能系统■效率分析[J].动力工程学报,2016,36(4):313-319.HE Qing,LIU Hui,ZHANG Junliang,et al.Analysis on exergy efficiency of a compressed-air energy storage system based on orthogonal design[J].Journal of Chinese Society of Power Engineering,2016,36(4):313-319.
    [12] 李雪梅,杨科,张远.AA-CAES压缩膨胀系统的运行级数优化[J].工程热物理学报,2013,34(9):1649-1653.LI Xuemei,YANG Ke,ZHANG Yuan.Optimization design of compression and expansion stages in advanced adiabatic compressed air energy storage system[J].Journal of Engineering Thermophysics,2013,34(9):1649-1653.
    [13] 韩中合,刘士名,周权,等.恒壁温储气模型下先进绝热压缩空气储能系统性能分析[J].中国电机工程学报,2016,36(12):3373-3380.HAN Zhonghe,LIU Shiming,ZHOU Quan,et al.Performance analysis of AA-CAES system with constant wall-temperature air storage model[J].Proceedings of the CSEE,2016,36(12):3373-3380.
    [14] 郭欢,许剑,陈海生,等.一种定压运行AA-CAES的系统效率分析[J].热能动力工程,2013,28(5):540-546.GUO Huan,XU Jian,CHEN Haisheng,et al.Analysis of the efficiency of a AA-CAES system operating at a constant pressure[J].Journal of Engineering for Thermal Energy and Power,2013,28(5):540-546.
    [15] RAJU M,KHAITAN S K.Modeling and simulation of compressed air storage in caverns:a case study of the Huntorf plant[J].Applied Energy,2012,89(1):474-481.
    [16] 李庆.绝热压缩空气蓄能与太阳能互补系统性能分析[D].北京:华北电力大学,2016.
    [17] XIA Caichu,ZHOU Yu,ZHOU Shuwei,et al.A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns[J].Renewable Energy,2015,74:718-726.
    [18] 庞永超.先进绝热压缩空气储能系统热力性能研究[D].北京:华北电力大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700