毛竹水热炭燃烧特性及动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:INVESTIGATION ON COMBUSTION CHARACTERISTICS AND KINETICS OF BAMBOO HYDROCHAR
  • 作者:施苏薇 ; 马培勇 ; 范方宇 ; 邢献军 ; 王玉青
  • 英文作者:Shi Suwei;Ma Peiyong;Fan Fangyu;Xing Xianjun;Wang Yuqing;School of Mechanical Engineering,Hefei University of Technology;Institute of Advanced Energy Technology and Equipment,Hefei University of Technology;School of Chemistry and Chemical Engineering,Hefei University of Technology;College of Forestry,Southwest Forestry University;
  • 关键词:毛竹 ; 水热炭 ; 温度 ; 燃烧 ; KAS法 ; FWO法 ; FR法
  • 英文关键词:moso bamboo;;hydrochar;;temperature;;combustion;;KAS model;;FWO model;;FR model
  • 中文刊名:TYLX
  • 英文刊名:Acta Energiae Solaris Sinica
  • 机构:合肥工业大学机械工程学院;合肥工业大学先进能源技术与装备研究院;合肥工业大学化学与化工学院;西南林业大学林学院;
  • 出版日期:2018-09-28
  • 出版单位:太阳能学报
  • 年:2018
  • 期:v.39
  • 基金:安徽省国际科技合作计划(JZ2015AKGH0144)
  • 语种:中文;
  • 页:TYLX201809036
  • 页数:8
  • CN:09
  • ISSN:11-2082/TK
  • 分类号:274-281
摘要
该文先对毛竹进行水热处理制备水热炭,然后对毛竹原料及其水热炭进行燃烧实验,采用的升温速率为10、20、40 K/min,基于无模式函数多重扫描速率法(FWO法、KAS法、FR法),研究毛竹及水热炭燃烧特性及动力学。结果表明:1)升温速率提高,样品挥发分燃烧和固定碳燃烧阶段均向高温区转移,着火性能下降,燃尽温度提高;水热炭较原料挥发分含量降低,固定碳含量升高;水热温度越高,热值越大,能量产率越低,水热温度为260℃时,能量产率最低,为35.97%,230℃水热炭的原子数比[O]/[C]、[H]/[C]已接近泥煤,燃料性能较优。2)采用FWO法、KAS法活化能结果相近,模型较优,以FWO法为例,原料、200、230、260℃水热炭活化能区间分别为89~126、89~216、86~118、80~90 kJ/mol。
        Hydrothermal carbonization is employed to pretreated moso bamboo for hydrochar preparation in this study.Thermal gravimetric curves are measured for the raw bamboo and hydrochars at different heating rates(10,20,40 K/min).The combustion kinetics parameters are calculated by the model-free methods,of which Flynn-Wall-Ozawa andKissinger-Akahira-Sunose are the most appropriate for the calculation of activated energy and result in the similar values.The activation energy increases first and then decreases with the increase of the mass conversion. Taking the FWOmethod as an example,the activation energy range of raw bamboo,hydrochar from temperature of 200,230 and 260 ℃(HC200,HC230,HC260)are 89-126、89-216、86-118、80-90 kJ/mol,respectively. Both the first and second peaks inDTG curves shift to the higher temperature and meanwhile the ignition performances of hydrochars decrease and theburnout temperatures increase when the heating rate increases. The higher the hydrothermal temperature,the greater thecalorific value and the lower the energy yield are. The lowest energy yield of 35.97% is HC260.The atomic O/C and H/Cratios of HC230 move towards to those of peat whose atomic O/C and H/C ratios are 0.64 and 1.36,respectively. Thecombustion property of HC260 is lower than that of the raw material,while the combustion performance of HC200 andHC230 are better than that of the raw material. Taking the calorific value,the energy yield and the comprehensivecombustion characteristic index into considering,HC230 is suitable for use as fuel.
引文
[1]熊绍武,张守玉,吴巧美,等.生物质制备燃料炭实验研究[J].太阳能学报,2015,36(5):1041-1047.[1]Xiong Shaowu,Zhang Shouyu,Wu Qiaomei,et al.Study on biomass carbonization for fuel charcoal preparation[J].Acta Energiae Solaris Sinica,2015,35(5):1041-1047.
    [2]Libra J A,Ro K S,Kammann C,et al.Hydrothermal carbonization of biomass residuals:A comparative review of the chemistry,processes and applications of wet and dry pyrolysis[J].Biofuels,2011,2(1):71-106.
    [3]Kim Daegi,Lee Kwanyong,Park K.Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery[J].Journal of Korean Society of Water and Wastewater,2015,29(1):57-63.
    [4]Burguete P,Corma A,Hitzl M,et al.Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization[J].Green Chemistry,2015,18(4):1051-1060.
    [5]Liu Zhengang,Quek A,Hoekman S K,et al.Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J].Fuel,2013,103(1):943-949.
    [6]Islam M A,Kabir G,Asif M,et al.Combustion kinetics of hydrochar produced from hydrothermal carbonisation of Karanj(Pongamia pinnata)fruit hulls via thermogravimetric analysis[J].Bioresource Technology,2015,194:14-20.
    [7]Yao Zhongliang,Ma Xiaoqian,Lin Yousheng.Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste[J].Applied Thermal Engineering,2016,104:678-686.
    [8]辜夕容,邓雪梅,刘颖旎,等.竹废弃物的资源化利用研究进展[J].农业工程学报,2016,32(1):236-242.[8]Gu Xirong,Deng Xuemei,Liu Yingni,et al.Review on comprehensive utilization of bamboo residues[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(1):236-242.
    [9]Sheng C,Azevedo J L T.Estimating the higher heating value of biomass fuels from basic analysis data[J].Biomass&Bioenergy,2005,28(5):499-507.
    [10]Danso-Boateng E,Holdich R G,Shama G,et al.Kinetics of faecal biomass hydrothermal carbonisation for hydrochar production[J].Applied Energy,2013,111(4):351-357.
    [11]Boussarsar H,RogéB,Mathlouthi M.Optimization of sugarcane bagasse conversion by hydrothermal treatment for the recovery of xylose[J].Bioresource Technology,2009,100(24):6537-6542.
    [12]Yang Wei,Wang Hui,Zhang Meng,et al.Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo[J].Bioresource Technology,2016,205:199-204.
    [13]Yang Wei,Shimanouchi T,Iwamura M,et al.Elevating the fuel properties of Humulus lupulus,Plumeria alba,and Calophyllum inophyllum L.through wet torrefaction[J].Fuel,2015,146:88-94.
    [14]熊绍武,张守玉,吴巧美,等.生物质炭燃烧特性与动力学分析[J].燃料化学学报,2013,41(8):958-965.[14]Xiong Shaowu,Zhang Shouyu,Wu Qiaomei,et al.Investigation on combustion characteristics and kinetics of bio-char[J].Journal of Fuel Chemistry and Technology,2013,41(8):958-965.
    [15]Liu Zhengang,Quek A,Hoekman S K,et al.Production of solid biochar fuel from waste biomass by hydrothermal carbonization[J].Fuel,2013,103:943-949.
    [16]Hirai M,Ohtake M,Shoda M.Removal kinetics of hydrogen sulfide,methanethiol and dimethyl sulfide by peat biofilters[J].Journal of Fermentation&Bioengineering,1990,70(5):334-339.
    [17]Zhang Shou-Yu,Lu Jun-Fu,Zhang Jian-Sheng,et al.Effect of pyrolysis intensity on the reactivity of coal char[J].Energy&Fuels,2008,22(5):3213-3221.
    [18]刘建忠,冯展管,张保生,等.煤燃烧反应活化能的两种研究方法的比较[J].动力工程学报,2006,26(1):121-124.[18]Liu Jianzhong,Feng Zhanguan,Zhang Baosheng,et al.Comparison of two methods for analyzing the activation energy of coal combustion[J].Journal of Power Engineering,2006,26(1):121-124.
    [19]胡荣祖.热分析动力学[M].北京:科学出版社,2001.[19]Hu Rongzu.Thermal analysis kinetics[M].Beijing:Science Publishing Company,2001.
    [20]Garcia-Maraver A,Perez-Jimenez J A,SerranoBernardo F,et al.Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees[J].Renewable Energy,2015,83:897-904.
    [21]田宜水,王茹.基于多升温速率法的典型生物质热动力学分析[J].农业工程学报,2016,32(3):234-240.[21]Tian Yishui,Wang Ru.Thermokinetics analysis of biomass based on model-free different heatingrate method[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(3):234-240.
    [22]刘荣厚,袁海荣,徐璐.玉米秸秆热解反应动力学的研究[J].太阳能学报,2007,28(5):527-531.[22]Liu Ronghou,Yuan Hairong,Xu Lu.Kinetics study of maize straw pyrolysis[J].Acta Energiae Solaris Sinica,2007,28(5):527-531.
    [23]Lu Changbo,Song Wenli,Lin Weigang.Kinetics of biomass catalytic pyrolysis[J].Biotechnology Advances,2009,27:583-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700