干旱区不同下垫面能量分配机理及对微气候反馈的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of energy partitioning and its feedback on the microclimate over different surfaces in an arid zone
  • 作者:李宏宇 ; 符淙斌 ; 郭维栋 ; 马芳
  • 英文作者:Li Hong-Yu;Fu Cong-Bin;Guo Wei-Dong;Ma Fang;Institute for Climate and Global Change Research,School of Atmospheric Sciences,Nanjing University;Environmental Institute,International Cooperation Center of National Development and Reform Commission Urban Planning and Design Institute;
  • 关键词:不同下垫面 ; 能量分配 ; 微气候 ; 反馈作用
  • 英文关键词:Different surfaces,energy partitioning,microclimate,feedback
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:南京大学大气科学学院,气候与全球变化研究院;国家发展和改革委员会国际合作中心规划设计研究院,环境研究所;
  • 出版日期:2015-03-10 14:32
  • 出版单位:物理学报
  • 年:2015
  • 期:v.64
  • 基金:国家重点基础研究发展规划(批准号:2011CB952002)资助的课题~~
  • 语种:中文;
  • 页:WLXB201505058
  • 页数:14
  • CN:05
  • ISSN:11-1958/O4
  • 分类号:438-451
摘要
本文利用位于美国新墨西哥州距离接近并且天气背景相同的四种下垫面(沙漠草原、稀疏灌木林、稀树草原和浓密灌木林)站点的通量观测资料,探讨了几种典型干旱下垫面的能量分配差异,并分析了其对微气候的反馈机理.结果表明,四种下垫面叶面积指数和粗糙度在由沙漠草原指向浓密灌木林的梯度方向上呈现增加的趋势,低覆盖度下垫面表现出更强的湍流输送阻力.总体来看,高覆盖度下垫面的净辐射、感热和潜热相对更高,尤其在生长季更明显.利用Penman-Monteith公式以及净辐射结合波文比两种方法诊断了在不同下垫面更替中湍流通量各影响因子的贡献.随着植被覆盖程度的提高,净辐射的变化对感热和潜热的变化起着决定作用,且为正贡献;地表阻抗和空气动力学阻抗变化引起的贡献相反.此外,沙漠草原和稀疏灌木林的地表温度和气温均高于浓密灌木林,主要源于稀疏植被增大的空气动力学阻抗和波文比引起的增温贡献,同时抵消了净辐射减小引起的降温效应,表明在相同气候和天气背景下,不同下垫面的陆面过程确实会对近地层微气候有明显的反馈作用.
        Model simulations show that land use and land cover changes(LUCC) may alter surface energy budget and influence surface microclimate, but up to now, it still lacks of sufficient observations for explaining the mechanism of climate change brought about by LUCC. Grasslands and shrub lands are typical land covers in the mid-latitude arid zone of the northern hemisphere. The data used in this paper was collected from four sites which are related to grassland, open shrubland,savanna and closed shrubland, and all located in New Mexico, USA. The four sites are near each other and have the same background in climate and weather. Thus, the difference in surface energy partitioning over the four surfaces is induced by different land processes, which was explained in our study. The paper also analyzed the feedbacks of different land surface parameters and energy partitioning for the surface microclimate.We find that the leaf area index(LAI) and surface roughness of the four sites increases from the desert grassland to the closed shrubland. The difference in vegetation structures and functions also affects aerodynamic resistance and surface resistance to heat transfer and the resistances exhibit larger over sparse surfaces. Generally, the sites with high vegetation cover have higher net radiation, sensible and latent heat fluxes, particularly in the growing season. In addition, the contributions of impacting factors to the turbulent fluxes are diagnosed by Penman-Monteith equation and a mathematical formula combining net radiation with Bowen ratio. Compared to the desert grassland, the variations in net radiation over other three surfaces indicate positive contributions to both sensible and latent heat fluxes and govern their changes. The variations in the aerodynamic resistance and the surface resistance lead to opposite contributions.Besides, both radiative surface temperature and surface air temperature over the sparse surfaces are significantly higher than that over the closed shrubland. Larger aerodynamic resistance and Bowen ratio over the sparse vegetation dominate the warming trend accompanying the vegetation degradation and simultaneously offset the cooling effect induced by the decrease in net radiation, showing the land surface process over different surfaces factually has an evident feedback on surface micro-climate in the same climate and weather background.
引文
[1]Shao P,Zeng X D 2012 Climatic Environ.Res.17 103(in Chinese)[邵璞,曾晓东2012气候与环境研究17 103]
    [2]Fu C B,An Z S 2002 Earth Sci.Front.9 271(in Chinese)[符淙斌,安芷生2002地学前缘9 271]
    [3]De Fries R,Houghton R.,Hansen M 2002 Proc.Natl.Acad.Sci.U.S.A.99 14256
    [4]Brown M,Black T A,Nesic Z,Foord V N,Spittlehouse D L,Fredeen A L,Grant N J,Burton P J,Trofymow J A 2010 Agri.Forest Meteorol.150 254
    [5]Randerson J T,Liu H,Flanner M G 2006 Chambers S D,Jin Y,Hess P G Science 314 1130
    [6]International Panel on Climate Change.Climate Change2013 the Physical Science Basis.Working Group 1 Contribution to the Fifth Assessment Report of the International Panel on Climate Change.International Panel on Climate Change,Cambridge,New York,2013
    [7]Bounoua L,De Fries R,Collatz G J,Sellers P,Khan H2002 Climatic Change 52 29
    [8]Werth D,Avissar R.2002 J.Geophys.Res.107 8087
    [9]Mcalpine C A,Syktus J,Ryan J G,Deo R C,Mckeon G M 2009 Glob.Change Biol.15 2206
    [10]Gao X J,Luo Y,Lin W T Zhao ZC,Giorgi F 2003 Adv.Atmos.Sci.20 583
    [11]Fu C B,Yuan H L 2001 Chinese Sci.Bull.46 1199
    [12]Pitman A J,Noblet D N,Cruz F T,Davin E L,Bonan G B 2009 Geophys.Res.Lett.36 L14814
    [13]Kalnay E,Cai M 2003 Nature 423 528
    [14]Trenberth K E 2004 Nature 427 213
    [15]Baldocchi D,Falge E,Gu L H,Olson R,Hollingger D,Running S,Anthoni P 2001 Bull.Amer.Meteor.Soc.82 2415
    [16]Lee X,Goulden M L,Hollinger D Y 2011 Nature 479384
    [17]Zhang Q,Wang S 2005 Acta Ecol.Sin.25 2459(in Chinese)[张强,王胜2005生态学报25 2459]
    [18]Zhang Q,Wei G A 2003 J.Desert Res.23 82(in Chinese)[张强,卫国安2003中国沙漠23 82]
    [19]Feng J W,Liu H Z,Wang L,Du Q,Shi L Q 2012 Sci.China Earth Sci.55 254
    [20]Zhao Q F,Guo W D,Ling X L,Liu Y,Wang G Y,Xie J 2013 Climatic Environ.Res.18 415(in Chinese)[赵钱飞,郭维栋,凌肖露,刘野,王国印,解静2013气候与环境研究18 415]
    [21]Yuan H,Dai Y,Xiao Z,Ji D Y,Shangguan W 2011Remote Sens.Environ.115 1171
    [22]Chen J Y,Wang J M,Yasushi M 1993 Chin J.Atmos.Sci.17 21(in Chinese)[陈家宜,王介民,光田宁1993大气科学17 21]
    [23]Baldocchi D,Ma S Y 2013 Tellus B 65 19994
    [24]Monteith J L 1965 Symp.Soc.Exp.Biol.19 205
    [25]Wang K,Dickinson R E 2012 Rev.Geophys.50 RG2005.
    [26]Li H Y,Zhang Q,Shi J S,Zhao J H,Wang S 2012 Acta Meteor Sin 70 1137(in Chinese)[李宏宇,张强,史晋森,赵建华,王胜2012气象学报70 1137]
    [27]Huang R H,Zhou D G,Chen W,Zhou L T,Wei Z G,Zhang Q,Gao X Q,Wei G A,Hou X H 2013 Chin J Atmos Sci 37 189(in Chinese)[黄荣辉,周德刚,陈文,周连童,韦志刚,张强,高晓清,卫国安,侯旭宏2013大气科学37 189]
    [28]Yue P,Zhang Q,Zhao W,Wang J S,Wang R Y,Yao Y B,Wang S,Hao X C,Yang F L,Wang R A 2013 Acta Phys.Sin.62 209201(in Chinese)[岳平,张强,赵文,王劲松,王润元,姚玉璧,王胜,郝小翠,阳伏林,王若安2013物理学报62 209201]
    [29]Zhu D Q,Gao X Q,Chen W 2006 J Desert Res 26 466(in Chinese)[朱德琴,高晓清,陈文2006中国沙漠26 466]
    [30]Fang Y L,Sun S F,Li Q 2010 Chin J Atmos Sci 34 290(in Chinese)[房云龙,孙菽芬,李倩2010大气科学34 290]
    [31]Yang K,Guo X F,Wu B Y 2011 Sci China Earth Sci54 19
    [32]Chen Y,Yang K,He J,Qin J,Shi J C,Du J Y,He Q2011 J.Geophys.Res.116 D20104
    [33]Zhang Q,Wang S,Wei G A 2003 Chin J Geophys 46616(in Chinese)[张强,王胜,卫国安2003地球物理学报46 616]
    [34]Yao T,Zhang Q 2014 Acta Phys.Sin.63 089201(in Chinese)[姚彤,张强2014物理学报63 089201]
    [35]Feng C,Gu S,Zhao L,Xu S X,Zhou H K,Li Y N,Xu W X,Wu L B 2010 Plateau Meteorology 29 70(in Chinese)[冯超,古松,赵亮,徐世晓,周华坤,李英年,徐维新,吴力博2010高原气象29 70]
    [36]Zhang Q,Zhao Y D,Wang S,Ma F 2007 Adv Earth Sci22 1150(in Chinese)[张强,赵映东,王胜,马芳2007地球科学进展22 1150]
    [37]Hu Z,Yu G R,Zhou Y L,Sun X M,Li Y N 2009 Agr.Forest Meteorol.149 1410
    [38]Wilson K B,Baldocchi D,Aubinet M 2002 Water Resour.Res.38 1294
    [39]Wilson K B,Baldocchi D 2000 Agri.Forest Meteorol.00 1
    [40]Min Q 1992 Meteor Mon 18 17(in Chinese)[闵骞1992气象18 17]
    [41]Fu C B 2003 Glob Planet Change 37 219
    [42]Stoy P C,Katul G G,Siqueira M B S 2006 Glob.Change Biol.12 2115
    [43]Liu H,Randerson J T 2008 J.Geophys.Res.113G01006.
    [44]Houghton R A 1995 Glob Change Biol 1 275
    [45]Churkina G,Brown D G,Keoleian G 2010 Glob Change Biol 16 135
    [46]Li S,Zhong Z 2014 Chin.Phys.B 23 029201
    [47]Ran L K,Yang W X,Chu Y L 2010 Chin.Phys.B 19079201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700