连接墙板内置支撑的钢框架节点加强构造分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on reinforced measures of steel frame in connection regions with unbonded steel brace encased in panel
  • 作者:丁玉坤 ; 邹学粉
  • 英文作者:DING Yukun;ZOU Xuefen;Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education;Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters (Harbin Institute of Technology),Ministry of Industry and Information Technology;
  • 关键词:墙板内置支撑钢框架结构 ; 防屈曲支撑 ; 墙板内置无黏结钢板支撑 ; 节点域 ; 滞回性能 ; 加强构造
  • 英文关键词:steel frame with steel brace encased in panel;;buckling restrained brace;;unbonded steel plate brace encased in panel;;connection region;;hysteretic behavior;;reinforced measure
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:结构工程灾变与控制教育部重点实验室(哈尔滨工业大学);土木工程智能防灾减灾工业和信息化部重点实验室(哈尔滨工业大学);
  • 出版日期:2019-04-09 15:02
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(51108125,51878217);; 黑龙江省自然科学基金(E2017037)
  • 语种:中文;
  • 页:HEBX201906018
  • 页数:12
  • CN:06
  • ISSN:23-1235/T
  • 分类号:135-146
摘要
为确保墙板内置无黏结支撑钢框架结构大侧移下利用内置支撑大幅屈服耗能,而钢框架在支撑连接区域处于弹性,通过有限元分析重点考察了支撑形式、支撑连接位置等对连接区域传力机制的影响,以及框架在连接处的加强构造.分析表明,1/50侧移角范围内时,梁端贴板加强后加强段基本处于弹性,非加强梁段的塑性铰位置与加强段端部间水平距离约为梁高的一半,塑性铰处翼缘轻微屈曲或无屈曲时钢梁截面的最大弯矩均接近塑性弯矩.据此,再结合支撑的连接位置和轴力便可确定出梁端内力,并进行节点域抗剪验算.分析还表明,节点域两侧的梁端弯矩按翼缘和腹板的抗弯刚度比例分配后传给节点域,而不是按现行设计规范中仅通过两翼缘的方式进行传递.节点域的柱腹板在剪切屈服后剪切变形大幅增加,增大了结构层间侧移.基于分析结果,给出了钢梁翼缘和腹板以及节点域柱腹板的贴板厚度等设计建议.
        To ensure that steel frames with unbonded steel plate brace encased in panel, which is also called as panel buckling restrained brace(panel BRB), can use yielding of panel BRBs to dissipate energy under large drifts while keeping regions of the frames connected with panel BRBs in elastic state, finite element analysis was conducted to investigate effects of factors, such as the type and connection location of panel BRBs, on force transfer mechanics of connection regions and corresponding reinforced measures. The analysis reveals that reinforced plates fixed on beam let yielding of beam occur near the ends of unreinforced segments. The distance between the plastic hinge of unreinforced segment and the end of reinforced plate was about half of the height of the beam, and the maximum bending moment at the plastic hinge, with small local buckling or without buckling for flange plates, was close to the plastic moment of beam within drifts of 1/50. Based on the conditions above, together with connection locations and axial forces of panel BRB, the internal forces at the ends of beam can be acquired, hence the shear resistance of panel zone of column can be checked. The analysis also shows that bending moments at ends of beam transferred to the panel zone according to the proportion of flexural rigidity for flange and wed of beam rather than according to only two flanges required by design codes. The shear deformation of panel zone greatly increased after shear yielding, inducing the increase of inter-story drifts. Based on the analysis results, design suggestions on the determination of the thickness of reinforced plates on flange and web of beam and panel zone of column were provided.
引文
[1] INOUE K,SAWAIZUMI S,HIGASHIBATA Y.Stiffening requirements for unbonded braces encased in concrete panels[J].Journal of Structural Engineering,2001,127(6):712
    [2] CHEN C C,LU L W.Development and experimental investigation of a ductile CBF system[C]// Proceedings of the 4th National Conference on Earthquake Engineering.Palm Springs:Earthquake Engineering Research Institute (EERI),1990:575
    [3] DING Yukun.Cyclic tests for unbonded steel plate brace encased in reinforced concrete panel or light-weight assembled steel panel[J].Journal of Constructional Steel Research,2014,94:91
    [4] DING Yukun.Cyclic tests of unbonded steel plate brace encased in steel-concrete composite panel[J].Journal of Constructional Steel Research,2014,102:233
    [5] 高层民用建筑钢结构技术规程:JGJ 99—2015 [S].北京:中国建筑工业出版社,2015Technical specification for steel structure of tall building:JGJ 99—2015[S].Beijing:China Architecture and Building Press,2015
    [6] 丁玉坤.无黏结内藏钢板支撑剪力墙滞回性能及其应用研究[D].哈尔滨:哈尔滨工业大学,2009DING Yukun.Hysteretic behavior and application of unbonded steel plate brace encased in reinforced concrete panel[D].Harbin:Harbin Institute of Technology,2009
    [7] American Institute of Steel Construction.Seismic provisions for structural steel buildings[S].Chicago:AISC,2016
    [8] LóPEZ W A,SABELLI R.Seismic design of buckling-restrained braced frames[R].Moraga,Calif:Steel tips,Structural Steel Education Council,2004:1
    [9] PALMER K D.Seismic behavior,performance and design of steel concentrically braced frame systems[D].Washington:University of Washington,2012
    [10]PALMER K D,ROEDER C W,LEHMAN D E.Connection design recommendations for improved BRBF performance[J].Engineering Journal,2016,53(1):29
    [11]郑睿.新型墙板内置无黏结支撑钢框架体系抗震性能研究 [D].哈尔滨:哈尔滨工业大学,2014ZHENG Rui.Seismic behavior of steel frames with novel types of unbonded steel brace encased in panel[D].Harbin:Harbin Institute of Technology,2014
    [12]丁玉坤,邹学粉,张文元,等.墙板内置无黏结支撑钢框架滞回性能数值模拟 [J].哈尔滨工业大学学报.2018,50(12):141DING Yukun,ZOU Xuefen,ZHANG Wenyuan,et al.Numerical simulation on hysteretic behavior of steel frame with unbonded steel plate brace encased in panel[J].Journal of Harbin Institute of Technology,2018,50(12):141
    [13]邹学粉.墙板内置无粘结支撑钢框架结构的抗震性能和设计方法 [D].哈尔滨:哈尔滨工业大学,2018ZOU Xuefen.Seismic behavior and design methods for steel frame with unbonded brace encased in panel[D].Harbin:Harbin Institute of Technology,2018

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700