调控脂肪酸合成植物转录因子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Researches of plant transcription factors involving in fatty acid synthesis
  • 作者:闵文莉 ; 曹喜涛 ; 季更生 ; 张国政
  • 英文作者:MIN Wenli;CAO Xitao;JI Gengsheng;ZHANG Guozheng;College of Biotechnology,Jiangsu University of Science and Technology;The Sericultural Research Institute,Chinese Academy of Agricultural Sciences;
  • 关键词:脂肪酸 ; 油脂积累 ; 转录因子
  • 英文关键词:fatty acid;;oil accumulation;;transcription factors
  • 中文刊名:FJKJ
  • 英文刊名:Bulletin of Fermentation Science and Technology
  • 机构:江苏科技大学生物技术学院;中国农业科学院蚕业研究所;
  • 出版日期:2017-05-25
  • 出版单位:发酵科技通讯
  • 年:2017
  • 期:v.46;No.180
  • 基金:江苏科技大学博士启动基金(1732921203)
  • 语种:中文;
  • 页:FJKJ201702008
  • 页数:6
  • CN:02
  • ISSN:33-1131/TS
  • 分类号:47-52
摘要
转录因子是植物特有的一类调节蛋白,对植物生长发育及抗逆性等有重要的作用,尤其是调控脂肪酸合成与油脂积累的转录因子,对生产生物能源起到关键作用,利用转录因子提高作物产油量已逐渐受到青睐,为未来获得高产油脂的优良作物作铺垫.对与脂肪酸合成相关的几种主要转录因子进行了概述,阐释其结构、功能及研究进展等,并对转录因子的应用进行了展望,以期为更多转录因子的结构和功能机制的研究提供基础.
        Transcription factors are plant-specific regulatory proteins,which play essential roles in the physiological and biochemical processes,especially in the synthesis of fatty acid and accumulation of oil.Recently,the application of transcription factors for higher oil production in crops has attracted a great deal of attention.This article reviews the characteristics,functions and applications of key transcription factors involved in fatty acid synthesis and triacylglycerol biosynthesis,providing the basis for further study of structural-functional analysis of transcription factors.
引文
[1]徐元浩,叶盛焱,陈忠祥,等.生物柴油的实用性研究[J].武汉理工大学学报,2005,27(5):90-93.
    [2]周丹,赵江哲,柏杨,等.植物油脂合成代谢及调控的研究进展[J].南京农业大学学报,2012,35(5):77-86.
    [3]BUIJS N A,SIEWERS V,NIELSEN J.Advanced biofuel production by the yeast Saccharomyces cerevisiae[J].Current opinion in chemical biology,2013,17(3):480-488.
    [4]刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2000,45(14):1465-1474.
    [5]FOCKS N,BENNING C.Wrinkled1:a novel,low-seed-oil mutant of Arabidopsis with a deficiency in the seed-specific regulation of carbohydrate metabolism[J].Plant physiology,1998,118(1):91-101.
    [6]MA W,KONG Q,ARONDEL V,et al.Wrinkled1,a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp[J].Plos One,2013,8(7):68887.
    [7]SUBROTO A P,UTOMO C,DARMAWAN C,et al.Isolation and characterization of oil palm wrinkled 1(WRI1)gene[J].Procedia chemistry,2015,14:40-46.
    [8]MURPHY D J.The dynamic roles of intracellular lipid droplets:from archaea to mammals[J].Protoplasma,2012,249(3):541-585.
    [9]BAUD S,WUILLèME S,TO A,et al.Role of WRINKLED1in the transcriptional regulation of glycolytic and fatty acid biosynthetic genes in Arabidopsis[J].Plant journal for cell&molecular biology,2009,60(6):933-947.
    [10]FUKUDA N,IKAWA Y,AOYAGI T,et al.Expression of the genes coding for plastidic acetyl-CoA carboxylase subunits is regulated by a location-sensitive transcription factor binding site[J].Plant molecular biology,2013,82(4):473-483.
    [11]MARCHIVE C,EACUTE,NIKOVICS K,et al.Transcriptional regulation of fatty acid production in higher plants:molecular bases and biotechnological outcomes[J].European journal of lipid science&technology,2014,116(10):1332-1343.
    [12]POUVREAU B,BAUD S,VERNOUD V,et al.Duplicate maize wrinkled1transcription factors activate target genes involved in seed oil biosynthesis[J].Plant physiology,2011,156(2):674-686.
    [13]WU X L,LIU Z H,HU Z H,et al.BnWRI1coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed[J].Journal of integrative plant biology,2014,56(6):582-593.
    [14]DUSSERT S,GUERIN C,ANDERSSON M,et al.Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition[J].Plant physiology,2013,162(3):1337-1358.
    [15]SANJAYA,DURRETT T P,WEISE S E,et al.Increasing the energy density of vegetative tissues by diverting carbon from starch to oil biosynthesis in transgenic Arabidopsis[J].Plant biotechnology journal,2011,9(8):874-883.
    [16]AN D H,MICHUNG S.Overexpression of Arabidopsis WRI1enhanced seed mass and storage oil content in Camelina sativa[J].Plant biotechnology reports,2015,9(3):137-148.
    [17]YU A Q,JUWONO N K,FOO J L,et al.Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids[J].Metabolic engineering,2016,34:36-43.
    [18]ZALE J,JUNG J H,KIM J Y,et al.Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass[J].Plant biotechnology journal,2015,14(2):661.
    [19]SONG A,GAO T,LI P,et al.Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium[J].Frontiers in plant science,2016,164(7):199.
    [20]郭晓芳,严海燕.植物中的Dof蛋白和Dof转录因子家族[J].植物生理学报,2005,41(4):419-423.
    [21]徐慧妮,王康,李昆志.植物Dof转录因子及其生物学功能[J].生物技术通报,2010(1):19-23.
    [22]WEN C,CHENG Q,ZHAO L,et al.Identification and characterisation of Dof transcription factors in the cucumber genome[J].Scientific reports,2016(6):23072.
    [23]YANAGISAWA S.Dof1and Dof2transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize[J].Plant journal,2000,21(3):281-288.
    [24]WARD J M,CUFR C A,DENZEL M A,et al.The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis[J].Plant cell,2005,17(2):475-485.
    [25]IBEZSALAZAR A,ROSALES MENDOZA S,ROCHA URIBE A,et al.Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii[J].Journal of biotechnology,2014,184(9):27-38.
    [26]CAI X,ZHANG C,SHU W,et al.The transcription factor SlDof22involved in ascorbate accumulation and salinity stress in tomato[J].Biochemical&biophysical research communications,2016,474(4):736-741.
    [27]FENG B H,HAN Y C,XIAO Y Y,et al.The banana fruit Dof transcription factor MaDof23acts as a repressor and interacts with MaERF9in regulating ripening-related genes[J].Journal of experimental botany,2016,67(8):2263-2275.
    [28]WANG H W,ZHANG B,HAO Y J,et al.The soybean Dof-type transcription factor genes,GmDof4and GmDof11,enhance lipid content in the seeds of transgenic Arabidopsis plants[J].Plant journal,2007,52(4):716-729.
    [29]WANG F,PERRY S E.Identification of direct targets of FUSCA3,a key regulator of Arabidopsis seed development[J].Plant physiology,2013,161(3):1251-1264.
    [30]ELAHI N,DUNCAN R W,STASOLLA C.Decreased seed oil production in FUSCA3 Brassica napus mutant plants[J].Plant physiology&biochemistry,2015,96(8):222.
    [31]GAZZARRINI S,TSUCHIYA Y,LUMBA S,et al.The transcription factor FUSCA3controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid[J].Developmental cell,2004,7(3):373-385.
    [32]LU Q S,PAZ J D,PATHMANATHAN A,et al.The Cterminal domain of FUSCA3negatively regulates mRNA and protein levels,and mediates sensitivity to the hormones abscisic acid and gibberellic acid in Arabidopsis[J].Plant journal,2010,64(1):100-113.
    [33]TSAI A Y,GAZZARRINI S.AKIN10and FUSCA3interact to control lateral organ development and phase transitions in Arabidopsis[J].Plant journal for cell&molecular biology,2012,69(5):809-821.
    [34]YAMAMOTO A.Cell-by-cell developmental transition from embryo to post-germination phase revealed by heterochronic gene expression and ER-body formation in Arabidopsis leafy cotyledon mutants[J].Plant&cell physiology,2014,55(12):2112-2125.
    [35]ROSCOE T T,GUILLEMINOT J,BESSOULE J J,et al.Complementation of seed maturation phenotypes by ectopic expression of abscisic acid insensitive3,fusca3and leafy cotyledon2in Arabidopsis[J].Plant&cell physiology,2015,56(6):1887-1908.
    [36]FATIHI A,BOULARD C,BOUYER D,et al.Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds[J].Plant science,2016,250:198-204.
    [37]SANTOSMENDOZA M,DUBREUCQ B,BAUD S,et al.Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis[J].Plant journal,2008,54(4):608-620.
    [38]朱红林,沙爱华,符秀梅,等.转录调控基因GmLEC1的cDNA克隆及其植物表达载体的构建[J].华北农学报,2009,24(1):64-68.
    [39]ELAHI N,DUNCAN R W,STASOLLA C.Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1[J].Plant physiology&biochemistry,2016,100:52-63.
    [40]TAN H,YANG X,ZHANG F,et al.Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFY COTYLEDON1and LEC1-LIKE in developing seeds[J].Plant physiology,2011,156(3):1577-1588.
    [41]MU J,TAN H,ZHENG Q,et al.LEAFY COTYLEDON1is a key regulator of fatty acid biosynthesis in Arabidopsis[J].Plant physiology,2008,148(2):1042-1054.
    [42]KE T,DONG C,MAO H,et al.Analysis of expression sequence tags from a full-length-enriched cDNA library of developing sesame seeds(Sesamum indicum)[J].BMC plant biology,2011,11(1):180.
    [43]HUANG F,ZHU Q H,ZHU A,et al.Mutants in the imprinted plckle related 2gene,suppress seed abortion of fertilization independent seed class mutants and paternal excess interploidy crosses in Arabidopsis[J].Plant journal,2017,90(2):383-395.
    [44]VEERAPPAN V,WANG J,KANG M,et al.A novel HSI2mutation in Arabidopsis affects the PHD-like domain and leads to derepression of seed-specific gene expression[J].Planta,2012,236(1):1.
    [45]SHARMA N,BENDER Y,BOYLE K,et al.High-level expression of sugar inducible gene2(HSI2)is a negative regulator of drought stress tolerance in Arabidopsis[J].BMC plant biology,2013,13(1):1-20.
    [46]ZHU Y,DONG A,MEYER D,et al.Arabidopsis NRP1and NRP2encode histone chaperones and are required for maintaining postembryonic root growth[J].Plant cell,2006,18(11):2879-2892.
    [47]ZHU Y,DONG A,SHEN W H.Histone variants and chromatin assembly in plant abiotic stress responses[J].Biochimica et biophysica acta,2011,1819(3/4):343-348.
    [48]WANG H,YUN L.Developmental control of Arabidopsis seed oil biosynthesis[J].Planta,2007,226(3):773-783.
    [49]BOURGIS F,KILARU A,CAO X,et al.Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J].Proceedings of the national academy of sciences,2011,108(30):12527-12532.
    [50]VANHERCKE T,TAHCHY A E,SHRESTHA P,et al.Synergistic effect of WRI1and DGAT1coexpression on triacylglycerol biosynthesis in plants[J].Febs letters,2013,587(4):364-369.
    [51]BAUD S,LEPINIEC L.Regulation of de novo fatty acid synthesis in maturing oilseeds of Arabidopsis[J].Plant physiology&biochemistry,2009,47(6):448-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700