镇江市四季PM_(2.5)污染特征与潜在源区分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:ANALYSIS ON SEASONAL DIFFERENCES OF POLLUTION CHARACTERISTICS AND POTENTIAL SOURCES OF PM_(2. 5) OF ZHENJIANG
  • 作者:邱坚 ; 霍玉玲 ; 万学平 ; 王秀君 ; 盛世杰 ; 沙丹丹 ; 赵雪婷 ; 杨雪
  • 英文作者:QIU Jian;HUO Yu-ling;WAN Xue-ping;WANG Xiu-jun;SHENG Shi-jie;SHA Dan-dan;ZHAO Xue-ting;YANG Xue;Zhenjiang Environmental Monitoring Center Station;Wuxi CAS Photonics Co.,Ltd;Jiangsu Environmental Monitoring Center Station;
  • 关键词:PM2.5 ; 污染特征 ; 后向轨迹 ; 聚类分析 ; 潜在源区 ; 镇江
  • 英文关键词:PM2.5;;pollution characteristics;;backward trajectory;;cluster analysis;;potential source region;;Zhenjiang
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:江苏省镇江环境监测中心;无锡中科光电技术有限公司;江苏省环境监测中心;
  • 出版日期:2019-06-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.252
  • 语种:中文;
  • 页:HJGC201906024
  • 页数:8
  • CN:06
  • ISSN:11-2097/X
  • 分类号:126-133
摘要
利用2017年3月1日—2018年2月28日镇江市环境监测站提供的逐时数据,对镇江市PM_(2. 5)污染特征进行分析,并结合HYSPLIT-后向轨迹模型,综合运用轨迹聚类及PSCF、CWT分析方法,计算了不同季节影响镇江城区PM_(2. 5)的主要气流输送路径及镇江市PM_(2. 5)的主要潜在源区。结果表明:镇江市PM_(2. 5)浓度季节分布特征明显,冬季PM_(2. 5)浓度最高,夏季最低。四季PM_(2. 5)浓度日变化均呈两峰一谷型分布,且夜间普遍高于白天,周末高于工作日。四季PM_(2. 5)浓度与NO_2、CO相关系数较高,表明工业排放与交通源可能是镇江市PM_(2. 5)的主要来源。镇江地区气流输送存在显著的季节变化特征:春季西北偏西及东北方向气流轨迹占主要优势;夏季气流主要来自东北、东南及西南方向;秋季以东北及偏东气流为主;冬季西北气流轨迹占绝对优势。镇江四季PM_(2. 5)浓度受本地及周边城市的局地污染输送影响较大,主要潜在源区集中分布在江苏本地及其周边的山东、安徽、浙江、上海等地。春、夏、秋季这些地区对镇江PM_(2. 5)浓度贡献值基本为35~75μg/m~3;冬季该贡献值较大,均在75μg/m~3以上,最高值可达到150μg/m~3以上;同时,冬季受北方污染输送影响,河北、京津冀等地也是主要潜在源区,贡献值为35~75μg/m~3。
        Based on the hourly data provided by Zhenjiang Environmental Monitoring Station from March 1st,2017 to February 28th,2018,the pollution characteristics of PM_(2. 5) in Zhenjiang were analyzed. HYSPLIT backward trajectory model,trajectory clustering and PSCF and CWT analysis methods were used to analyze the main airflow transport paths and the main potential source regions affecting PM_(2. 5) concentration in urban area of Zhenjiang,and their contributions were calculated. The results showed that: the seasonal distribution characteristics of PM_(2. 5) concentration in Zhenjiang were significant: PM_(2. 5) concentration was the highest in winter and the lowest in summer; the diurnal variation of PM_(2. 5) concentration in four seasons was in distribution of two peaks and one valley,and PM_(2. 5) concentration in nighttime was generally higher than that in daytime,meanwhile the PM_(2. 5) concentration at weekends was higher than that on weekdays; the correlation coefficient of PM_(2. 5) concentration with NO_2 and CO in four seasons was higher,indicating that industrial emissions and traffic sources were probably the main sources of PM_(2. 5) in Zhenjiang; the air flow had significant characteristics of seasonal variations in Zhenjiang:the air flow mainly came from west-northwest and northeast direction in spring,the northeast,southeast and southwest air flow tracks dominated in summer,the northeast and east-northwest air flow tracks dominated in autumn,and the northwest air flow track dominated in winter; the concentration of PM_(2. 5) in Zhenjiang was greatly affected by pollution transportation of local and surrounding cities in all year; Jiangsu,Shandong,Anhui,Zhejiang and Shanghai contributed greatly to PM_(2. 5) in Zhenjiang,between 35 and 75 μg/m~3 in spring,summer and autumn,and more than 75 μg/m~3 in winter,as high as over 150 μg/m~3,meanwhile,Zhenjiang was affected by northern pollution transportation in winter,and Beijing,Tianjin and Hebei were also the main potential source areas of PM_(2. 5) in Zhenjiang,with contribution values in range of 35~75 μg/m~3.
引文
[1] He K,Yang F M,Ma Y L,et al. The characteristics of PM2. 5in Beijing,China[J]. Atmospheric Environment,2001,35(29):4959-4970.
    [2]田颖,沈红军.江苏省工业发展与大气污染物排放的时空演变关系[J].环境监控与预警,2017,9(5):5-9.
    [3]包贞,冯银厂,焦荔,等.杭州市大气PM2. 5和PM10污染特征及来源解析[J].中国环境监测,2010,26(2):44-48.
    [4] Zhang R J,Jing J S,Tao J,et al. Chemical characterization and source apportionment of PM2. 5in Beijing:seasonal perspective[J].Atmospheric Chemistry and Physics,2014,13(14):7053-7074.
    [5] Zheng M,Salmon L G,Schauer J J,et al. Seasonal trends in PM2. 5source contributions in Beijing,China[J]. Atmospheric Environment,2005,39(22):3967-3976.
    [6]王芳,陈东升,程水源,等.基于气流轨迹聚类的大气污染输送影响[J].环境科学研究,2009,22(6):637-642.
    [7]蒋永成,赵天良,王宏,等.福州市PM2. 5污染过程中大气边界层和区域传输研究[J].中国环境科学,2015,35(2):347-355.
    [8]薛文博,付飞,王金南,等.中国PM2. 5跨区域传输特征数值模拟研究[J].中国环境科学,2014,34(6):1361-1368.
    [9]张艳,余琦,伏晴艳,等.长江三角洲区域输送对上海市空气质量影响的特征分析[J].中国环境科学,2010,30(7):914-923.
    [10]李莉,蔡鋆琳,周敏. 2013年12月中国中东部地区严重灰霾期间上海市颗粒物的输送途径及潜在源区贡献分析[J].环境科学,2015,36(7):2327-2336.
    [11]王爱平,朱彬,银燕,等.黄山顶夏季气溶胶数浓度特征及其输送潜在源区[J].中国环境科学,2014,34(4):852-861.
    [12]王珏,王郭臣,陈莉.济南市四季PM10、PM2. 5输送来源及其传输过程[J].环境科学与技术,2015,38(5):175-182.
    [13]任传斌,吴立新,张媛媛,等.北京城区PM2. 5输送途径与潜在源区贡献的四季差异分析[J].中国环境科学,2016,36(9):2591-2598.
    [14]葛跃,王明新,白雪,等.苏锡常地区PM2. 5污染特征及其潜在源区分析[J].环境科学学报,2017,37(3):803-813.
    [15]王朔,赵卫雄,徐学哲,等.北京一次严重雾霾过程气溶胶光学特性与气象条件[J].中国环境科学,2016,36(5):1305-1312.
    [16] Draxler R R,Hess G D. An overview of the HYSPLIT_4modeling system for trajectories[J]. Australian Meteorological Magazine,1998,47(4):295-308.
    [17] Wang Y Q,Zhang X Y,Draxler R R. Traj Stat:GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data[J].Environmental Modelling and Software,2009,24(8):938-939.
    [18]李星,赵文吉,熊秋林,等.北京采暖季PM2. 5水溶性无机离子污染特征及其影响因素[J].生态环境学报,2018(1):93-100.
    [19] Begum B A,Kim E,Jeong C H,et al. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode[J]. Atmospheric Environment,2005,39(20):3719-3724.
    [20]王郭臣,王东启,陈振楼.北京冬季严重污染过程的PM2. 5污染特征和输送路径及潜在源区[J].中国环境科学,2016,36(7):1931-1937.
    [21]何涛,彭燕,乔利平,等.常州市冬季大气污染特征及潜在源区分析[J].环境科学研究,2018,31(3):487-495.
    [22]沙丹丹,王红磊,朱彬,等.冬季PM2. 5中含碳气溶胶的污染特征:长江三角洲地区一次区域重污染过程分析[J].中国环境科学,2017,37(10):3611-3622.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700