用户名: 密码: 验证码:
LD端面泵浦钾蒸气激光器阈值特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on threshold characteristics of laser-diode end-pumped potassium vapor laser
  • 作者:宁方晋 ; 谭荣清 ; 王玉洁 ; 李志永
  • 英文作者:Ning Fangjin;Tan Rongqing;Wang Yujie;Li Zhiyong;Institute of Electronics, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:半导体泵浦 ; 钾金属蒸气 ; 阈值特性 ; 无烃化
  • 英文关键词:diode pumped;;K vapor;;threshold characteristics;;no hydrocarbon
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院电子学研究所;中国科学院大学;
  • 出版日期:2019-04-16 14:32
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(61775215)
  • 语种:中文;
  • 页:HWYJ2019S1009
  • 页数:8
  • CN:S1
  • ISSN:12-1261/TN
  • 分类号:62-69
摘要
基于三能级速率方程建立了端面泵浦钾蒸气激光器阈值理论计算模型,研究了半导体泵浦钾蒸气激光器阈值特性。利用模型分析了各种因素对阈值泵浦功率密度的影响,结果表明:蒸气室的温度与长度都是通过影响钾的各能级粒子数分布,进而共同影响阈值泵浦功率密度,并且存在最佳温度、最佳长度;阈值功率密度随泵浦光线宽增大基本呈线性增长;缓冲气体压强通过影响蒸气室对泵浦光的吸收效率,进而影响阈值功率密度;镀膜后高的蒸气室窗口透过率和低于70%的输出耦合率也可减小阈值泵浦功率密度。文中的工作可为实现LD泵浦钾蒸气激光输出以及实验系统的设计和优化提供参考。
        Based on the three-level rate equation, a simulation model of the end-pumped K vapor laser threshold was established, and the threshold characteristics of diode pumped K vapor laser was analyzed.The influences of operation parameters on the threshold pumped power intensity were investigated, which was based on this model. The result shows that cell′s temperature and length both govern the distribution of populations of K, thus combining to impact on the threshold pumped power intensity, and there exists optimal temperature and length. The threshold power intensity linearly increases with pump linewidth. The buffer gas pressure impacts on the threshold intensity by changing the cell′ s absorption efficiency of the pumped power. High window transmittance and less than 70% output coupling can make threshold keep in a lower level. The study for various parameters of components will provide reference for the design and optimization of the systems, and diode pumped potassium vapor laser output.
引文
[1]Krupke W F,Beach R J,Payne S A,et al.DPAL:a new class of lasers for CW power beaming at ideal photovoltaic cell wavelengths[C]//AIP,2004,702:367-377.
    [2]Bogachev A V,Garanin S G,Dudov A M,et al.Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation[J].Quantum Electronics,2012,42(2):95-98.
    [3]Pitz G A,Stalnaker D M,Guild E M,et al.Advancements in flowing diode pumped alkali lasers[C]//SPIE,2016,9729:972902.
    [4]Yang Zining,Wang Hongyan,Hua Weihong,et al.Diodepumped rubidium vapor laser[J].High Power Laser&Particle Beams,2011,23(9):2273-2274.(in Chinese)
    [5]Xu Cheng,Tan Rongqing,Li Zhiyong,et al.2.8W linearly polarized output of rubidium vapor laser with diode pumping[J].Chinese Journal of Lasers,2013,40(1):0102009.(in Chinese)
    [6]Li Zhiyong,Tan Rongqing,Huang Wei,et al.Diode pumped cesium vapor laser[J].High Power Laser and Particle Beams,2014,26(1):1657-1660.(in Chinese)
    [7]Zhdanov B V,Rotondaro M D,Shaffer M K,et al.Efficient potassium diode pumped alkali laser operating in pulsed mode[J].Optics Express,2014,22(14):17266-17270.
    [8]Zhdanov B V,Rotondaro M D,Shaffer M K,et al.Potassium diode pumped alkali laser demonstration using a closed cycle flowing system[J].Optics Communications,2015,354:256-258.
    [9]Beach R J,Krupke W F,Kanz V K,et al.End-pumped continuous-wave alkali vapor lasers:experiment,model,and power scaling[J].Journal of the Optical Society of America B,2004,21(12):2151-2163.
    [10]Hager G,Perram G.A three-level analytic model for alkali metal vapor lasers:part I.Narrowband optical pumping[J].Applied Physics B,2010,101(2):45-56.
    [11]Gao F,Chen F,Xie J,et al.Comparative study of diodepumped hydrocarbon free Rb and K vapor lasers[J].Optics&Laser Technology,2014,58(58):166-171.
    [12]Li Lin,Tan Rongqing,Xu Cheng,et al.Analysis on threshold characteristics of diode pumped rubidium vapor lasers[J].High Power Laser and Particle Beams,2014,26(2):26-32.(in Chinese)
    [13]Huang Wei,Tan Rongqing,Li Zhiyong.Theoretical investigation on threshold characteristics of diode sidepumped rubidium vapor laser[J].Infrared and Laser Engineering,2016,45(2):0206001.(in Chinese)
    [14]Ciury J,Krause L.42P1/2-42P3/2 mixing in potassium induced in collisions with noble gas atoms[J].J Quant Spectrosc Radiat Transf,1982,28(28):457-461.
    [15]Wang H,Gould P L,Stwalley W C.Long-range interaction of the39K(4s)+39K(4p)asymptote by photoassociative spectroscopy.I.The 0-gpure long-range state and the longrange potential constants[J].Journal of Chemical Physics,1997,106(19):7899-7912.
    [16]Pitz G A,Sandoval A J,Zameroski N D,et al.Pressure broadening and shift of the potassium D1transition by the noble gases and N2,H2,HD,D2,CH4,C2H6,C3H8,and nC4H10with comparison to other alkali rates[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2012,113(5):387-395.
    [17]Pitz G A,Sandoval A J,Tafoya T B,et al.Pressure broadening and shift of the rubidium D1transition and potassium D2transitions by various gases with comparison to other alkali rates[J].Journal of Quantitative Spectroscopy&Radiative Transfer,2014,140(6):18-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700