旋翼模型垂直下降状态气动特性风洞试验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Wind tunnel test on aerodynamic characteristics of rotor model in vertical descent
  • 作者:黄明其 ; 兰波 ; 何龙
  • 英文作者:HUANG Mingqi;LAN Bo;HE Long;China Aerodynamics Research and Development Center,Low Speed Aerodynamics Institute;
  • 关键词:旋翼模型 ; 垂直下降状态 ; 气动载荷 ; 大视场PIV ; 桨尖涡
  • 英文关键词:rotor model;;vertical descend state;;aerodynamic load;;large field PIV;;blade tip vortex
  • 中文刊名:HEBX
  • 英文刊名:Journal of Harbin Institute of Technology
  • 机构:中国空气动力研究与发展中心低速空气动力研究所;
  • 出版日期:2019-04-04 11:46
  • 出版单位:哈尔滨工业大学学报
  • 年:2019
  • 期:v.51
  • 基金:国家自然科学基金(1167021313)
  • 语种:中文;
  • 页:HEBX201904020
  • 页数:7
  • CN:04
  • ISSN:23-1235/T
  • 分类号:137-143
摘要
直升机垂直下降状态中包含极为危险的涡环状态.为提高对涡环状态的认识以及掌握其气动载荷、流场变化,并为相应数值模拟及飞行仿真提供试验数据,采用直升机垂直升降试验台以及大视场PIV试验测量系统在Φ5 m立式风洞对Bo-105旋翼模型进行了垂直下降状态的气动载荷以及流场测量.在桨尖马赫数相似的情况下,得到了该旋翼模型在不同总距、不同下降速度情况下的平均拉力和功率变化,以及较大范围的详细流场图像,分析了旋翼模型气动载荷变化现象,并进一步揭示了旋翼模型垂直下降状态下流场的演化发展过程.试验研究表明:旋翼模型垂直下降速度达到8 m/s后,拉力和功率急剧下降,且其各自均方根误差值显著增大;旋翼模型总距越小,对应的旋翼拉力值随垂直下降速度增大而迅速减小,越易进入"涡环状态";桨尖涡结构不稳定的主要内因是形成了"涡对"结构,相邻桨尖涡之间的距离越近,桨尖涡越不稳定;桨尖涡聚集形成"涡环"以及涡环结构的动态演化是旋翼性能突变的关键因素.
        Helicopter vertical descend state contains extremely dangerous vortex ring state. In order to improve the understanding of the vortex ring state, to master its aerodynamic load and flow field changes, and to provide experimental data for the corresponding numerical simulation and flight simulation, the aerodynamic load and flow field measurement test of Bo-105 rotor model under vertical descend state was conducted in Φ5 m vertical wind tunnel using helicopter vertical flight test rig and the large filed PIV measurement system. In the case of similar tip Mach number, the average thrust, average power, and wide range PIV flow field images of this rotor model under different collective pitch and descent speeds were obtained, the rotor model aerodynamic load variation was analyzed, and the flow field development process under different descent speeds was captured. The test research shows that the thrust and power decreased sharply after the vertical velocity of the rotor model dropped to 8 m/s, and the root-mean square error increased significantly. The smaller the collective pitch, the easier it was to enter vortex ring state, and the faster for the rotor model thrust to decrease with the increase of vertical descent speed. The main cause of instability of blade tip vortex structure is the vortex-pair structure. When the distance between adjacent blade tip vortices was smaller, the blade tip vortex was more unstable. The formation of vortex ring by the blade tip vortices gathering together and the dynamic evolution of the vortex ring structure were the key factors in the sudden change of rotor performance.
引文
[1]JOHNSON W. Helicopter theory[M]. Princeton: Princeton University Press, 1980
    [2]王适存. 直升机空气动力学[M]. 北京: 航空工业出版社, 1985: 135WANG Shicun. Helicopter aerodynamics[M]. Bejing: Aviation Industry Press, 1985: 135
    [3]孙文胜, 林明. 直升机飞行中的涡环状态研究[J]. 系统工程与电子技术, 2004, 26(9): 1319SUN Wensheng, LIN Ming. Research of vortex-ring state of helicopter flight[J]. Systems Engineering and Electronics, 2004, 26(9): 1319. DOI:10.3321/j.issn:1001-506X.2004.09.045
    [4]邹元振, 陈宣友. “超黄蜂”直升机飞行事故探讨[J]. 直升机技术, 2011(2): 65ZOU Yuanzen, CHEN Xuanyou. Discussion of a “Super-wasp” helicopter flight accident[J]. Helicopter Technique, 2011(2): 65. DOI:10.3969/j.issn.1673-1220.2011.02.013
    [5]JAMES S. Experimental investigation of rotor vortex wakes in descent[C]//Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada: AIAA, 2004: 297. DOI:10.2514/6.2004-297
    [6]GREEN R B, GILLIES E A, BROWN R E. The flow field around a rotor in axial descent[J]. Journal of Fluid Mechanics, 2005, 534: 237. DOI:10.1017/S0022112005004155
    [7]辛宏, 高正. 直升机涡环状态速度边界的试验研究[J]. 南京航空航天大学学报, 1995, 27(4): 439XIN Hong, GAO Zheng. An experimental investigation on the boundary of helieopter vortex-ring state[J]. Journal of Nanjing University of Aeronautics & Astronautic, 1995, 27(4): 439
    [8]曹栋, 曹义华. 垂直下降状态下的旋翼三维流场数值模拟[J]. 北京航空航天大学学报, 2012, 38(5): 641CAO Dong, CAO Yihua. Three dimensional numerical simulation of rotor in vertical descent flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 641. DOI:10.13700/j.bh.1001-5965.2012.05.001
    [9]陆洋, 高正, 黄文明, 等. 直升机涡环状态边界的飞行试验研究[J]. 南京航空航天大学学报, 2001, 33(5): 405LU Yang, GAO Zheng, HUANG Wenming, et al. Flight test investigation of helicopter vortex-ring state boundary[J]. Journal of Nanjing University of Aeronautics & Astronautic, 2001, 33(5): 405. DOI:10.3969/j.issn.1005-2615.2001.05.001
    [10]孙文胜. 海事直升机垂直下降涡环状态实验研究[J]. 实验力学, 2008, 23(4): 371 SUN Wensheng. Experimental study of vertical-descent vortex-ring state for shipboard helicopte[J]. Journal of Experimental Mechanics, 2008, 23(4): 371
    [11]黄明其, 兰波, 杨永东, 等. Φ5 m立式风洞直升机垂直升降试验台研制[J]. 实验流体力学, 2013, 25(5): 94HUANG Mingqi, LAN Bo, YANG Yongdong, et al. The development of helicopter vertical flight test rig in Φ5 m vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94. DOI:10.3969/j.issn.1672-9897.2013.05.018
    [12]黄明其. 直升机风洞试验[M]. 北京: 国防工业出版社, 2014: 81HUANG Mingqi. Helicopter wind tunnel test[M]. Beijing: National Defence Industry Press. 2014: 81
    [13]黄明其, 武杰, 何龙, 等. 旋翼模型悬停状态桨尖涡特性[J]. 哈尔滨工业大学学报, 2018, 50(4): 124HUANG Mingqi, WU Jie, HE Long, et al. Blade tip vortex characteristics of rotor under hovering status[J]. Journal of Harbin Institute of Technology, 2018, 50(4): 124. DOI:10.11918/j.issn.0367-6234.201703089.
    [14]杨永东, 武杰. 悬停旋翼桨尖涡的试验研究[J]. 实验流体力学, 2008, 22(3): 36YANG Yongdong, WU Jie. Investigation of hovering rotor tip vortex[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(3): 36. DOI:10.3969/j.issn.1672-9897.2008.03. 008
    [15]BURLEY C L, BROOKS T F, van der WALL B G, et al. Rotor wake vortex definition-initial evaluation of 3-C PIV results of the HART-II study[C]//Proceedings of the 28th European Rotorcraft Forum, Bristol England. Bristol, England: NASA, 2002. DOI:10.1260/147547206775220434

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700