两种固体氧化物燃料电池系统的故障建模与仿真对比研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fault modeling and simulation comparative study of two solid oxide fuel cell system
  • 作者:吴肖龙 ; 许元武 ; 胡荣 ; 邓忠华 ; 付晓薇 ; 李曦
  • 英文作者:WU Xiao-long;XU Yuan-wu;HU Rong;DENG Zhong-hua;FU Xiao-wei;LI Xi;School of Artificial Intelligence and Automation, Key Laboratory of Image Processing and Intelligent Control of Education Ministry,Huazhong University of Science Technology;School of Mathematics and Statistics, Lingnan Normal University;School of Computer Science and Technology, Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, Wuhan University of Science and Technology;Shenzhen Huazhong University of Science and Technology Research Institute;
  • 关键词:建模仿真 ; 固体氧化物燃料电池 ; 故障分析 ; 纯氢气和天然气系统 ; 故障仿真 ; 辅助设备故障
  • 英文关键词:simulation modeling;;solid oxide fuel cells(SOFC);;failure anslysis;;pure hydrogen and natural gas system;;fault simulation;;balance of plant fault
  • 中文刊名:KZLY
  • 英文刊名:Control Theory & Applications
  • 机构:华中科技大学人工智能与自动化学院图像信息处理与智能控制教育部重点实验室;岭南师范学院数学与统计学院;武汉科技大学计算机科学与技术学院智能信息处理与实时工业系统湖北省重点实验室;深圳华中科技大学研究院;
  • 出版日期:2019-03-15
  • 出版单位:控制理论与应用
  • 年:2019
  • 期:v.36
  • 基金:Supported by the National Natural Science Foundation of China(61873323,61773174,61573162);; the Wuhan Science and Technology Plan Project(2018010401011292);; the Hubei Province Natural and Science Foundation(2017CFB4165,2016CFA037);; the Open Fund Project of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System(znxx2018ZD02);; the Basic Research Project of Shenzhen(JCYJ20170307160923202,JCYJ20170818163921328)
  • 语种:英文;
  • 页:KZLY201903009
  • 页数:12
  • CN:03
  • ISSN:44-1240/TP
  • 分类号:74-85
摘要
固体氧化物燃料电池(SOFC)系统的建模方式较多,而基于机理模型的故障诊断是能够通过系统的动态趋势辨别故障的有效手段之一,但该方法对机理模型的准确性有要求.此外,不同的燃料供给系统采用的系统结构也是有差异的,进而导致在相同故障下SOFC系统的动态响应也是不同的.因此,本文基于两种燃料供应方式,提出了分别以纯氢气和天然气作为燃料的SOFC系统结构,并基于原有机理知识进行MATLAB/Simulink系统建模.经与真实SOFC系统实验对比,搭建的系统模型能够有效模拟系统在无故障状态下的动态变化;另外,在无故障模型的基础上,分别加入两类常见故障,其一为风机故障,其二为燃料供应管路泄露.最后通过仿真分析,明确了所搭建模型的合理性,且发现了两种燃料供应对SOFC系统热响应特性是不同的,对SOFC系统故障的检测和设备选型具有重要意义.
        There are many modeling methods for solid oxide fuel cell(SOFC) systems. One of the fault diagnosis methods is based on accurate system modeling. In addition, different fuel supply systems adopt different system structures,which lead to different dynamic response of SOFC system under the same fault condition. Therefore, based on two kinds of fuel supply modes, this paper proposes the SOFC system structure using pure hydrogen and natural gas as fuel, respectively.Based on the original knowledge, the system model is built by MATLAB/Simulink. Compared with the actual SOFC system experiment, the system model can simulate effectively the system dynamic under the fault-free condition. Moreover, fuel supply manifold leakage fault and blower fault are added to fault-free model respectively. Finally, through simulation analysis, the rationality of the model is clarified. It is found that the thermal response characteristics of two kinds of fuel supplied SOFC system are different, which has important significance for fault detection and type selection of SOFC system.
引文
[1]AZIZI M A,BROUWER J.Progress in solid oxide fuel cell-gas turbine hybrid power systems:System design and analysis,transient operation,controls and optimization.Applied Energy,2018,215:237-289.
    [2]HU Peng,CAO Guangyi,ZHU Xinjian.Temperature model and fuzzy control for the proton-exchange-membrane fuel cell.Control Theory&Applications,2011,28(10):1371-1376.(胡鹏,曹广益,朱新坚.质子交换膜燃料电池温度模型与模糊控制.控制理论与应用,2011,28(10):1371-1376.)
    [3]LI Qi,CHEN Weirong,LIU Shukui,et al.Dynamic modeling of proton-exchange-membrane fuel cell for double model control.Control Theory&Applications,2009,26(7):809-811.(李奇,陈维荣,刘述奎,等.质子交换膜燃料电池动态建模及其双模控制.控制理论与应用,2009,26(7):809-811.)
    [4]LI Guo,ZHANG Peichang,YU Datai,et al.A control system for fuel-cell electric vehicles.Control Theory&Applications,2008,25(2):289-293.(李果,张培昌,余达太,等.电动车燃料电池控制系统.控制理论与应用,2008,25(2):289-293.)
    [5]ACHENBACH E.Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack.Journal of Power Sources,1994,49(1/2/3):333-348.
    [6]LARMINIE J,DICKS A.Fuel Cell Systems Explained.2nd Edition.New Jersey,USA:Wiley,2003:22-23.
    [7]LI S H,GONG L,YANG Y P.Fault tolerant control of an anode offgas recycle based SOFC system.American Control Conference.Seattle,USA:IEEE,2017:4117-4122.
    [8]AGUIAR P,ADJIMAN C S,BRANDON N P.Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell,I:model-based steady-state performance.Journal of Power Sources,2004,138(1):120-136.
    [9]WU X J,LIU H L.Fault diagnosis of solid oxide fuel cell based on a supervised self-organization map model.Journal of Fuel Cell Science and Technology,2016,12(3):031001/1-031001/8.
    [10]SORRENTINO M,PIANESE C.Control oriented modeling of solid oxide fuel cell auxiliary power unit for transportation applications.Journal of Fuel Cell Science and Technology,2009,6(4):041011/1-041011/12.
    [11]GRECO A,SORCE A,LITTWIN R,et al.Reformer faults in sofc systems:Experimental and modeling analysis,and simulated fault maps.International Journal of Hydrogen Energy,2014,39(36):21700-21713.
    [12]STEINER N Y,HISSEL D,MOCOTEGUY P,et al.Application of fault tree analysis to fuel cell diagnosis.Fuel Cells,2012,12(2):302-309.
    [13]XIE C J,OGDEN J M,QUAN S H,et al.Optimal power management for fuel cell-battery full hybrid powertrain on a test station.International Journal of Electrical Power and Energy Systems,2013,53(1):307-320.
    [14]XIE C J,XU X Y,BUJLO P,et al.Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure.Journal of Power Sources,2015,279:487-494.
    [15]JI N,XU D Z,LIU F.A novel adaptive neural network constrained control for solid oxide fuel cells via dynamic anti-windup.Neurocomputing,2016,214:134-142.
    [16]WU X J,GAO D H.Fault tolerance control of sofc systems based on nonlinear model predictive control.International Journal of Hydrogen Energy,2017,42(4):2288-2308.
    [17]WU X J,YE Q W.Fault diagnosis and prognostic of solid oxide fuel cells.Journal of Power Sources,2016,321:47-56.
    [18]LI S H,CAO H L,YANG Y P.Data-driven simultaneous fault diagnosis for solid oxide fuel cell system using multi-label pattern identification.Journal of Power Sources,2018,378(28):646-659.
    [19]ZHANG Z H,LI S H,XIAO Y W,et al.Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning.Applied Energy,2019,233:930-942.
    [20]CHENG H,JING S W,XU Y W,et al.Control-oriented modeling analysis and optimization of planar solid oxide fuel cell system.International Journal of Hydrogen Energy,2016,41(47):22285-22304.
    [21]CHENG H,LI X,JIAN J H,et al.A nonlinear sliding mode observer for the estimation of temperature distribution in a planar solid oxide fuel cell.International Journal of Hydrogen Energy,2015,40(1):593-606.
    [22]MUELLER F,JABBARI F,GATNOR R,et al.Novel solid oxide fuel cell system controller for rapid load following.Journal of Power Sources,2007,172(1):308-323.
    [23]GEBREGERGIS A,PILLAY P,BHATTACHARYYA D,et al.Solid oxide fuel cell modeling.IEEE Transactions on Industrial Electronics,2008,56(1):139-148.
    [24]XI H,VARIGONDA S,JING B.Dynamic modeling of a solid oxide fuel cell system for control design.American Control Conference.Baltimore,MD,USA:IEEE,2010:423-428.
    [25]YANG J,QIN S,ZHANG W Y,et al.Improving the load-following capability of a solid oxide fuel cell system through the use of time delay control.International Journal of Hydrogen Energy,2016,42(2):1221-1236.
    [26]GAUCKLER L J,BECKEL D,BUERGLER B,et al.Solid oxide fuel cells:Systems and materials.Chimia International Journal for Chemistry,2004,36(12):837-850.
    [27]CAO H L,LI X.Thermal management-oriented multivariable robust control of a kw-scale solid oxide fuel cell stand-alone system.IEEETransactions on Energy Conversion,2016,31(2):596-605.
    [28]CAO H L,DENG Z H,LI X,et al.Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives.International Journal of Hydrogen Energy,2010,35(4):1749-1758.
    [29]MUELLER F,BROUWER J,JABBARI F,et al.Dynamic simulation of an integrated solid oxide fuel cell sSystem including current-based fuel flow control.Journal of Fuel Cell Science and Technology,2006,3(2):144-154.
    [30]BAO C,WANG Y,FENG D L,et al.Macroscopic modeling of solid oxide fuel cell(SOFC)and model-based control of SOFC and gas turbine hybrid system.Progress in Energy&Combustion Science,2018,66:83-140.
    [31]ZHANG L,JIAN J H,CHENG H,et al.Control strategy for power management,efficiency-optimization and operating-safety of a 5 kWsolid oxide fuel cell system.Electrochimica Acta,2015,177:237-249.
    [32]ZHANG L,LI X,JIAN J H,et al.Dynamic modeling and analysis of a 5 kW solid oxide fuel cell system from the perspectives of cooperative control of thermal safety and high efficiency.International Journal of Hydrogen Energy,2015,40(1):456-476.
    [33]NANAEDA K,MUELLER F,BROUWER J,et al.Dynamic modeling and evaluation of solid oxide fuel cell-combined heat and power system operating strategies.Journal of Power Sources,2010,195(10):3176-3185.
    [34]MING Q,IRVING P,BERRY J,et al.Diesel reformer-a key component for a truck fuel cell APU.Fuel Cells Bulletin,2010(1):12-15.
    [35]WU Taotao,ZHANG Huisheng,SU Ming.Dynamic modeling and simulation of microchannel reformer.Computer Simulation,2007,24(1):242-245.(吴涛涛,张会生,苏明.微通道重整器的动态特性建模与仿真.计算机仿真,2007,24(1):242-245.)
    [36]SHEN Cheng,CAO Guangyi,ZHU Xinjian.Modeling and control of molten carbonate fuel cell(MCFC)system.Chinese Journal of Power Sources,2002,26(2):104-109.(沈承,曹广益,朱新坚.熔融碳酸盐燃料电池系统建模与控制.电源技术,2002,26(2):104-109.)
    [37]WU X,XU Y,XUE T,et al.Fault modeling and simulation of pure hydrogen solid oxide fuel cell system.IEEE Chinese Automation Congress(CAC).Jinan,China:IEEE,2017:2688-2692.作者简介

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700