成年小鼠颈5脊髓钳夹损伤模型的制备与评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Establishment and evaluation of C5 dorsal spinal cord crush injury model in adult mice
  • 作者:谭波涛 ; 刘捷 ; 虞乐华 ; 殷樱
  • 英文作者:TAN Botao;LIU Jie;YU Lehua;Department of Rehabilitation Medicine, the Second Affiliated Hospital of Chongqing Medical University;
  • 关键词:脊髓损伤 ; 小鼠 ; 轴突再生 ; 模型
  • 英文关键词:Spinal cord injury;;Mice;;Axon regeneration;;Model
  • 中文刊名:ZJZS
  • 英文刊名:Chinese Journal of Spine and Spinal Cord
  • 机构:重庆医科大学附属第二医院康复医学科;英属哥伦比亚大学ICORD中心;
  • 出版日期:2019-02-25
  • 出版单位:中国脊柱脊髓杂志
  • 年:2019
  • 期:v.29;No.263
  • 基金:国家自然科学基金资助项目(81702221);; 重庆市科委项目(cstc2018jcyjAX0180);; 重庆市渝中区科委项目(20180121)
  • 语种:中文;
  • 页:ZJZS201902013
  • 页数:6
  • CN:02
  • ISSN:11-3027/R
  • 分类号:75-80
摘要
目的 :制备小鼠C5脊髓背侧及背外侧束钳夹损伤模型,评价损伤后动物的行为学和组织学表现。方法:采用C57/BL成年小鼠为实验对象,将16只动物随机分为损伤组和对照组,每组8只。动物麻醉后,切开背侧颈部皮肤,显露并切除小鼠C5椎板,损伤组采用自制改良FST DUMONT 5号手术钳分别钳夹背侧皮质脊髓束(dCST)和脊髓背外侧束两次;对照组仅切除椎板不做脊髓钳夹损伤。分别在术前和术后3d、2周、4周、6周、8周时采用圆筒实验、水平楼梯实验和食物抓取实验评价动物的行为学表现;术后8周时采用BDA顺行示踪观察皮质脊髓束(CST)和红核脊髓束(RST)在损伤后的情况。结果:钳夹损伤后,小鼠后肢步行功能正常但肢体的精细活动能力受到明显影响。在圆筒实验中,损伤组小鼠伤侧前肢的使用频率下降,前肢梳洗动作幅度受限,伤后各时间点与对照组相比差异均有统计学意义(P<0.05);在水平楼梯实验中,损伤组小鼠对横梁的抓握精确性降低,伤后各时间点与对照组相比差异有统计学意义(P<0.05);在食物抓取实验中,损伤组小鼠的食物抓取能力也出现了明显受限,伤后各时间点与对照组相比差异有统计学意义(P<0.05)。以上行为学结果在伤后3d达高峰,2周后逐渐恢复,但直至8周仍不达正常水平。术后8周顺行示踪结果显示对照组小鼠CST和RST均显露清晰,纤维束呈纵行排列;损伤组小鼠CST和RST在损伤处大量断裂、逆向崩解,且无再生迹象。结论:成年小鼠C5脊髓钳夹损伤模型能够方便观察动物随意运动的控制情况及评价轴突的再生状况,适合作为轴突再生的研究模型。
        Objectives: To evaluate the C5 spinal cord crush injury(SCI) model by behavior performance and histology in adult mice. Methods: A total of 16 adult mice(C57/Black) was randomly assigned into two groups, SCI group and Sham group with eight mice in each group. The spinal cord crush injury(the dorsal and dorsal lateral axons were cut) model at C5 was established by using a modified FST DUMONT 5 surgical forceps. In the Sham group, the lamina was removed without damaging the spinal cord. The behavior performance was evaluated by rearing cylinder, horizontal ladder, and stair case pellet reaching. The axons of the corticospinal tract(CST) and the rubrospinal tract(RST) were observed 8 weeks after operation by using BDA anterograde tracing. Results: The hind limb locomotor function was rarely affected in both groups and showed similar BMS scores after injury. However, the fine skilled motor functions were obviously impaired by this axonal crush. Specifically, animals in the SCI group showed significant decrease of the upper limbs usage on the injured side and the limitation of grooming actions in the rearing cylinder, when compared with the Sham group at all time points(P<0.05). Similarly, when walking across the horizontal ladder, mice in the SCI group showed significant accuracy reduction in gripping the beam, especially in the injured side, when compared with the Sham group at all time points(P<0.05). The ability of grasping food pellets in the SCI group significantly decreased when compared with the Sham group at all time points(P<0.05). These impaired motor functions reached the summit 3 days after injury and started to recover 2 weeks later. However, they did not go back to normal even 8 weeks after injury. No regeneration was observed neither in the corticospinal tract nor in the rubrospinal tract 8 weeks after injury. Conclusions: A stable, reliable and clinical relevant animal model of cervical spinal cord injury was successfully established, which was suitable for axon regeneration researches.
引文
1.He Z,Jin Y.Intrinsic control of axon regeneration[J].Neuron,2016,90(3):437-451.
    2.Hilton B J,Assinck P,Duncan GJ,et al.Dorsolateral funiculus lesioning of the mouse cervical spinal cord at C4 but not at C6 results in sustained forelimb motor deficits[J].J Neurotrauma,2013,30(12):1070-1083.
    3.Graziadei PPC.The olfactory systems:a model for the study of neurogenesis and axon regeneration in mammals[J].Neuronal Plastisity,1978,131-153.
    4.Hilton BJ,Moulson AJ,Tetzlaff W.Neuroprotection and secondary damage following spinal cord injury:concepts and methods[J].Neurosci Lett,2017,652:3-10.
    5.Celik M,Gkmen N,Erbayraktar S,et al.Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury[J].Proc Natl Acad Sci USA,2002,99(4):2258-2263.
    6.Asante CO,Martin JH.Differential joint-specific corticospinal tract projections within the cervical enlargement[J].PloS one,2013,8(9):e74454.
    7.Whishaw IQ,Pellis SM,Gorny B,et al.Proximal and distal impairments in rat forelimb use in reaching follow unilateral pyramidal tract lesions[J].Behav Brain Res,1993,56(1):59-76.
    8.李兵奎,常巍,宋跃明.脊髓损伤动物模型制备的研究进展[J].中国脊柱脊髓杂志,2012,22(10):947-950.
    9.Koozekanani SH,Vise WM,Hashemi RM,et al.Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen[J].JNeurosurg,1976,44(4):429-434.
    10.Tan BT,Jiang L,Liu L,et al.Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats[J].CNS Neurosci Ther,2017,23(6):475-487.
    11.Hou T,Wu Y,Wang L,et al.Cellular prostheses fabricated with motor neurons seeded in self-assembling peptide promotes partial functional recovery after spinal cord injury in rats[J].Tissue Eng Part A,2012,18(9-10):974-985.
    12.Lu P,Woodruff G,Wang Y,et al.Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury[J].Neuron,2014,83(4):789-796.
    13.Kushchayev SV,Giers MB,Hom ED,et al.Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury[J].J Neurosurg:Spine,2016,25(1):114-124.
    14.Liu K,Lu Y,Lee JK,et al.PTEN deletion enhances the regenerative ability of adult corticospinal neurons[J].Nat Neurosci,2010,13(9):1075-1081.
    15.Hellal F,Hurtado A,Ruschel J,et al.Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury[J].Science,2011,331(6019):928-931.
    16.Lang BT,Cregg JM,De Paul MA,et al.Modulation of the proteoglycan receptor PTPσpromotes recovery after spinal cord injury[J].Nature,2015,518(7539):404-408.
    17.Basso DM,Fisher LC,Anderson AJ,et al.Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains[J].J Neurotrauma,2006,23(5):635-659.
    18.Hollis II ER,Ishiko N,Yu T,et al.Ryk controls remapping of motor cortex during functional recovery after spinal cord injury[J].Nat Neurosci,2016,19(5):697-705.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700