载黑磷量子点脂质体用于宫颈癌光热治疗的体外研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In vitro study of black phosphorus quantum dot-loaded liposomes for photothermal therapy of cervical cancer
  • 作者:陈秀丽 ; 周韵 ; 梁欣 ; 梅林 ; 武小金
  • 英文作者:CHEN Xiu-li;ZHOU Yun;LIANG Xin;MEI Lin;WU Xiao-jin;School of Life Science, Tsinghua University;School of Pharmaceutics Science (Shenzhen),Sun Yat-sen University;
  • 关键词:黑磷量子点 ; 脂质体 ; 理化性质 ; 宫颈癌 ; 光热治疗
  • 英文关键词:black phosphorus quantum dot;;liposome;;physicochemical property;;cervical carcinoma;;photothermal therapy
  • 中文刊名:YXXB
  • 英文刊名:Acta Pharmaceutica Sinica
  • 机构:清华大学生命科学学院;中山大学药学院(深圳);
  • 出版日期:2019-03-17 07:00
  • 出版单位:药学学报
  • 年:2019
  • 期:v.54
  • 基金:国家自然科学基金资助项目(81771966);; 广东杰出青年科学基金资助项目(2014A030306036)
  • 语种:中文;
  • 页:YXXB201904020
  • 页数:8
  • CN:04
  • ISSN:11-2163/R
  • 分类号:155-162
摘要
本研究制备载黑磷量子点(BPQDs)脂质体(liposome-BPQDs),探究其理化性质及用于宫颈癌光热治疗的效果。应用超声法制备BPQDs,薄膜分散法制备liposome-BPQDs,并对其形貌、粒径、电位和拉曼光谱等进行表征。采用CCK-8法检测该纳米粒对人宫颈癌细胞(HeLa)的毒性。使用激光共聚焦显微镜(CLSM)和荧光倒置显微镜分别观察HeLa细胞摄取和细胞凋亡情况。结果表明,扫描电镜下, liposome-BPQDs呈椭球状或球状;透射电镜观察显示liposome-BPQDs粒径约90~110 nm。粒径及电位测量结果表明liposome-BPQDs粒径为(104.2±0.35) nm, zeta电位(-11.3±3.01) mV。脂质体包封率为(84.40±2.13)%。在室外通风、温度范围25℃~34℃和相对湿度80%~82%自然条件下, liposome-BPQDs光热效应良好,降解较BPQDs缓慢。Liposome-BPQDs可被HeLa细胞所摄取;近红外激光照射后,载BPQDs量达20μg·mL~(-1)时, HeLa细胞死亡率大幅度上升。本研究表明, liposomeBPQDs稳定性较高,且具有良好的光热效应,有望应用于宫颈癌光热治疗。
        In this study, black phosphorus quantum dots(BPQDs)-loaded liposomes(liposome-BPQDs) were prepared to explore physicochemical properties and photothermal effects on cervical cancer cells. BPQDs were fabricated by ultrasonic method. Liposome-BPQDs were prepared by thin film dispersion. Surface morphology,particle size, zeta potential and Raman spectra of liposome-BPQDs were characterized. The cytotoxicity of the liposome-BPQDs against human cervical cancer cells(HeLa) was examined by CCK-8 assay. Confocal laser scanning microscope(CLSM) and fluorescence microscopy were used to observe the uptake and apoptosis of HeLa cells. The results indicated that liposome-BPQDs were ellipsoidal or spherical under scanning electron microscope,TEM observation showed liposome-BPQDs were about 90-110 nm in diameter. The particle size measurements showed liposome-BPQDs were(104.2 ± 0.35) nm in diameter, and zeta potential were examined to be(-11.3 ±3.01) mV. The encapsulation efficiency was(84.40 ± 2.13)%. Under natural conditions with outdoor ventilation,temperature range of 25 ℃-34 ℃ and relative humidity of 80%-82%, the photothermal effects of liposomeBPQDs was better and the degradation denaturation of liposome-BPQDs were slower than those of BPQDs.The results also reflected that liposome-BPQDs could be uptaken by HeLa cells easily. After near-infrared laser irradiation, the mortality of HeLa cells rise significantly when the amount of BPQDs reach 20 μg·mL~(-1). In summary,liposome-BPQDs with high stability exhibited good photothermal effects, which can be expected to be applied to photothermal therapy of cervical carcinoma.
引文
[1]Wang HH,Fu ZG,Wen N,et al.The applications and prospects of doxorubicin-photodynamic combination therapy in malignant tumors[J].Chin J Geriat Dentist(中华老年口腔医学杂志),2018,16:51-54,60.
    [2]Bilici K,Muti A,Duman FD,et al.Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730-840 nm spectral region[J].Photochem Photobiol Sci,2018,17,1787-1793.
    [3]Li Y,Wang X,Gao L,et al.Aptamer-conjugated gold nanostars for targeted cancer photothermal therapy[J].J Mater Sci,2018,53:14138-14148.
    [4]Shao JD,Xie HH,Huang H,et al.Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy[J].Nat Commun,2016,7:12967.
    [5]Ren X,Li Z,Huang Z,et al.Environmentally robust black phosphorus nanosheets in solution:application for selfpowered photodetector[J].Adv Funct Mater,2017,27:1606834.
    [6]Li Y,Liu Z,Hou Y,et al.Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy[J].ACS Appl Mater Interfaces,2017,9:25098-25106.
    [7]Tao W,Zhu X,Yu X,et al.Black phosphorus nanosheets as a robust delivery platform for cancer theranostics[J].Adv Mater,2017,29:1603276.
    [8]Ramadass SK,Anantharaman NV,Subramanian S,et al.Paclitaxel/epigallocatechin gallate coloaded liposome:a synergistic delivery to control the invasiveness of MDA-MB-231 breast cancer cells[J].Colloids Surf B Biointerfaces,2015,125:65-72.
    [9]Ruttala HB,Ko YT.Liposome encapsulated albumin-paclitaxel nanoparticle for enhanced antitumor efficacy[J].Pharm Res,2015,32:1002-1016.
    [10]Tagami T,Kubota M,Ozeki T.Effective remote loading of doxorubicin into DPPC/poloxamer 188 hybrid liposome to retain thermosensitive property and the assessment of carrier-based acute cytotoxicity for pulmonary administration[J].J Pharm Sci,2015,104:3824-3832.
    [11]Das A,Adhikari C,Nayak D,et al.First evidence of the liposomemediated deintercalation of anticancer drug doxorubicin from the drug-DNA complex:a spectroscopic approach[J].Langmuir,2016,32:159-170.
    [12]Wang L,Yang CQ,Wang J.Assemble of magnetic nanoparticles into the structure of cisplatin liposome[J].Acta Pharm Sin(药学学报),2011,46:592-598.
    [13]Catanzaro D,Nicolosi S,Cocetta V,et al.Cisplatin liposome and 6-amino nicotinamide combination to overcome drug resistance in ovarian cancer cells[J].Oncotarget,2018.9:16847-16860.
    [14]Yu YL,Zheng ZY,Yi CC,et al.Preparation and in vitro evaluation of artemisinin loaded long-circulating liposomes[J].Acta Pharm Sin(药学学报),2018,53:1002-1008.
    [15]Baek JS,Cho CW.A multifunctional lipid nanoparticle for codelivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells[J].Oncotarget,2017,8:30369-30382.
    [16]Battaglia L,Serpe L,Foglietta F,et al.Application of lipid nanoparticles to ocular drug delivery[J].Expert Opin Drug Deliv,2016,13:1743-1757.
    [17]Xia S,Tan C,Zhang Y,et al.Modulating effect of lipid bilayercarotenoid interactions on the property of liposome encapsulation[J].Colloids Surf B Biointerfaces,2015,128:172-180.
    [18]Silva R,Ferreira H,Little C,et al.Effect of ultrasound parameters for unilamellar liposome preparation[J].Ultrason Sonochem,2010,17:628-632.
    [19]Zhang H.Thin-film hydration followed by extrusion method for liposome preparation[M]//D'Souza GGM.Liposomes:Methods and Protocols.New York:Humana Press,2017,1522:17-22.
    [20]Lee JS,Hwang SY,Lee EK.Imaging-based analysis of liposome internalization to macrophage cells:effects of liposome size and surface modification with PEG moiety[J].Colloids Surf BBiointerfaces,2015,136:786-790.
    [21]Zhang XB,Hou XP.Comparative efficacy and distribution of evans blue liposome modified with DSPE-PEG,Tween 80,and Brij35[J].J Chin Pharm Sci,2003,12:71-75.
    [22]Wang H,Zhao P,Liang X,et al.Construction of a novel cationic polymeric liposomes formed from PEGylated octadecyl-quaternized lysine modified chitosan/cholesterol for enhancing storage stability and cellular uptake efficiency[J].Bioethanol Bioeng,2010,106:952-962.
    [23]Yang F,Qin A,Li J,et al.Targeting and long circulating drug delivery system base on mannose-conjugated PEG-modified nano-liposomes for tumor chemotherapy[J].Acta Laser Biol Sin(激光生物学报),2017,26:334-341.
    [24]Yang YF,Xie XY,Yang Y,et al.A review on the influences of size and surface charge of liposome on its targeted drug delivery in vivo[J].Acta Pharm Sin(药学学报),2013,48:1644-1650.
    [25]Soppimath KS,Aminabhavi TM,Kulkarni AR,et al.Biodegradable polymeric nanoparticles as drug delivery devices[J].JControl Release,2001,70:1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700