口服胰岛素肠溶聚合物脂质杂化纳米粒的制备与评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and evaluation of an oral insulin enteric preparation based on polymer-lipid hybrid nanoparticles
  • 作者:林霞 ; 李娜 ; 李金蔚 ; 杨子毅 ; 金坚
  • 英文作者:LIN Xia;LI Na;LI Jinwei;YANG Ziyi;JIN Jian;School of Pharmaceutical Sciences,Jiangnan University;
  • 关键词:胰岛素 ; 口服肠溶制剂 ; 聚合物-脂质杂化纳米粒 ; 制备
  • 英文关键词:insulin;;oral enteric preparation;;polymer-lipid hybrid nanoparticles;;preparation
  • 中文刊名:ZGYD
  • 英文刊名:Journal of China Pharmaceutical University
  • 机构:江南大学药学院;
  • 出版日期:2019-06-25
  • 出版单位:中国药科大学学报
  • 年:2019
  • 期:v.50
  • 基金:国家自然科学基金资助项目(No.81603060);; 江苏高校品牌专业建设工程资助项目(No.PPZY2015B146)~~
  • 语种:中文;
  • 页:ZGYD201903009
  • 页数:9
  • CN:03
  • ISSN:32-1157/R
  • 分类号:60-68
摘要
为了提高胰岛素的口服生物利用度,本研究以聚乙二醇聚乳酸共聚物(PEG-PLA)为高分子载体材料、磷脂s75为脂质材料、Eudragit L100为肠溶材料制备口服胰岛素肠溶聚合物脂质杂化纳米粒(INS-NPs L100),并对其体内外性能进行评价。采用W/O/W复乳溶剂挥发法制备胰岛素聚合物脂质杂化纳米粒(INS-NPs),以包封率、粒径和释药行为为评价指标,采用单因素法对处方进行优化;将最优INS-NPs与肠溶材料Eudragit~? L100混合制备成INS-NPs L100,并对其形态、体外释放及健康大鼠灌胃后的降血糖作用进行评价。以最优处方制备的INS-NPs包封率为(62.18±4.51)%,平均粒径为(225.2±94.3) nm,多分散系数为0.191±0.068,Zeta电位为-(14.84±1.26) mV。包裹肠溶材料后所制备的INS-NPs L100,在pH 1.0盐酸溶液中2 h累积释放量为8.01%,在pH 6.8的磷酸盐缓冲液中6 h累积释放量为67.31%。将所制备的INS-NPs L100经口给予健康大鼠(38 IU/kg)后,具有明显的持续降血糖作用,3.5 h时血糖浓度可降至初始值的76%。实验结果表明,本研究所制备的INS-NPs L100可有效减缓胰岛素在胃液中的释放速度,提高蛋白在胃肠道中的稳定性,为多肽、蛋白类药物口服给药提供了新的研究思路。
        To improve the oral bioavailability of insulin,an insulin-loaded enteric polymer-lipid hybrid nanoparticles(INS-NPs L100) was prepared using methoxy PEG-poly(D,L-lactide)(PEG-PLA),phospholipid s75 and Eudragit L100;in vitro and in vivo behaviors of INS-NPs L100 were evaluated.Insulin-loaded polymer-lipid hybrid nanoparticles(INS-NPs) were prepared by W/O/W double emulsion solvent evaporation method.INS-NPs formulation was optimized by single factor experiment using encapsulation efficiency,particle size,and in vitro release behavior of the corresponding INS-NPs L100 as evaluation indexes.The morphology,in vitro drug release profile and hypoglycemic effect of the INS-NPs L100 using the optimal INS-NPs and Eudragit~? L100(used as enteric polymer) were assessed.The results showed that the encapsulation efficiency of the optimal INS-NPs was(62.18±4.51)%.The average particle size,PDI and Zeta potential was(225.2±94.3) nm,0.191±0.068,and-(14.84±1.26) mV,respectively.The cumulative drug release from the INS-NPs L100 was only 8.01% at 2 h in pH 1.0 HCl solution,exhibiting a slow drug release behavior;while the drug release from INS-NPs L100 was 67.31% at 6 h in phosphate buffer of pH 6.8.Mereorer,after oral administration of INS-NPs L100 with a dose of 38 IU/kg,the blood glucose concentration of healthy rats was reduced to 76% of the initial values at 3.5 h,exhibiting a sustained hypoglycemic effect.In summary,the INS-NPs L100 prepared in this study could effectively decrease the release rate of insulin in gastric juice,improve the stability of protein in the gastrointestinal tract,and provide a new approach for the oral administration of peptides and protein drugs.
引文
[1] Wang L,Gao P,Zhang M,et al.Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J].JAMA,2017,317(24):2515-2523.
    [2] Li CY,Huang WL,Qian H.Advances in the research of long-acting strategy of insulin and GLP-1 analogs[J].J China Pharm Univ(中国药科大学学报),2018,49(6):660-670.
    [3] Wong CY,Al-Salami H,Dass CR.Microparticles,microcapsules and microspheres:a review of recent developments and prospects for oral delivery of insulin[J].Int J Pharm,2018,537(1/2):223-244.
    [4] Deutel B,Laffleur F,Palmberger,et al.In vitro characterization of insulin containing thiomeric microparticles as nasal drug delivery system[J].Eur J Pharm Sci,2016,81:157-161.
    [5] Ledet G,Graves RA,Bostanian LA,et al.A second-generation inhaled insulin for diabetes mellitus[J].Am J Health-Syst Pharm,2015,72(14):1181-1187.
    [6] Cai L,Zhu Z.Progress in non-invasive routes for insulin preparations[J].J China Pharm Univ(中国药科大学学报),2007,38(2):105-107.
    [7] Geho WB,Rosenberg LN,Schwartz SL,et al.A single-blind,placebo-controlled,dose-ranging trial of oral hepatic-directed vesicle insulin add-on to oral antidiabetic treatment in patients with type 2 diabetes mellitus[J].J Diabetes Sci Technol,2014,8(3):551-559.
    [8] Eldor R,Arbit E,Corcos A,et al.Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes:a pilot study[J].PLoS One,2013,8(4):59524.
    [9] Li CY,Huang WL,Qian H.Advances in the research of long acting strategy of insulin and GLP-1 analogs[J].J China Pharm Univ(中国药科大学学报),2018,49(6):660-670.
    [10] Grigoras AG.Polymer-lipid hybrid systems used as carriers for insulin delivery[J].Nanomedicine,2017,13(8):2425-2437.
    [11] Sun S,Liang N,Yamamoto H,et al.pH-sensitive poly (lactide-co-glycolide) nanoparticle composite microcapsules for oral delivery of insulin[J].Int J Nanomed,2015,10:3489-3498.
    [12] Ben-Shabat S,Kumar N,Domb AJ.PEG-PLA block copolymer as potential drug carrier:preparation and characterization[J].Macromol Biosci,2006,6(12):1019-1025.
    [13] Liu J,Gong T,Wang C,et al.Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles:preparation and characterization[J].Int J Pharm,2007,340(1/2):153-162.
    [14] García-Díaz M,Foged C,Nielsen HM.Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids[J].Int J Pharm,2015,482(1/2):84-91.
    [15] Ghasemi R,Abdollahi M,Emamgholi Zadeh E,et al.mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human growth hormone (rhGH)[J].Sci Rep,2018,8(1):9854.
    [16] Gou J,Feng S,Liang Y,et al.Polyester-solid lipid mixed nanoparticles with improved stability in gastro-intestinal tract facilitated oral delivery of larotaxel[J].Mol Pharm,2017,14(11):3750-3761.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700