中空介孔ZnO@SiO_2微球的制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of hollow mesoporous ZnO@SiO_2 microsphere and its photocatalytic performance
  • 作者:李东立 ; 梁清华 ; 李国雨
  • 英文作者:LI Dong-li;LIANG Qing-hua;LI Guo-yu;School of Chemistry and Chemical Engineering, Guangxi University;
  • 关键词:中空微球 ; 氧化锌 ; 氧化硅 ; 光催化
  • 英文关键词:hollow micro-sphere;;zinc oxide;;silica;;photocatalysis
  • 中文刊名:GSGY
  • 英文刊名:Journal of Lanzhou University of Technology
  • 机构:广西大学化学化工学院;
  • 出版日期:2019-04-25 18:22
  • 出版单位:兰州理工大学学报
  • 年:2019
  • 期:v.45;No.196
  • 语种:中文;
  • 页:GSGY201902005
  • 页数:6
  • CN:02
  • ISSN:62-1180/N
  • 分类号:32-37
摘要
通过三嵌段共聚物P123和PAA两种超分子在乙醇中形成协同模板体系,以溶胶凝胶法成功制备了中空介孔SiO_2微球.通过溶液吸附和高温煅烧的方法将纳米ZnO负载在SiO_2中空球结构中获得ZnO@SiO_2纳米粉体.用X射线衍射仪(XRD)、透射电子显微镜(TEM)、静态氮气吸附仪和紫外-可见漫反射(DRS)对产物的物相组成、微观形貌、比表面积、带隙宽度等进行表征.结果表明:通过负载的方式,样品的比表面积从208 m~2/g提高到253 m~2/g,孔径分布更加均匀,纳米ZnO高度分散在SiO_2载体中,提高了样品的紫外光催化活性.通过在不同乙酸锌浓度下制备的样品对比表明,在40 mmol/L物质量浓度的乙酸锌溶液中所制得的紫外光催化活性最高,在100 min内可以有效降解亚甲基蓝溶液.
        Using two kinds of supermolecular, tri-block copolymer P123 and PAA dissolved in ethanol as a synergistic template system, the hollow mesoporous SiO_2 microsphere was successfully prepared via sol-gel method. Then the nano ZnO was loaded into the hollow SiO_2 structure by means of solution adsorption and high-temperature calcination method to obtain hollow mesoporous ZnO@SiO_2 nano-powder. Products were characterized with X-ray diffraction(XRD), transmission electron microscopy(TEM), static nitrogen adsorption, and UV-vis diffuse reflectance spectroscopy(DRS) to get their phase composition, microscopic morphology, specific surface area and energy gap. The result showed that the specific surface area of the sample increase to 253 m~2/g from 208 m~2/g, the pore size distribution would be more uniform, and the nano-ZnO would be highly dispersed in the SiO_2, enhancing the photocatalytic activity of the sample. Comparing the samples prepared with different zinc acetate concentrations with each other, it was showed that the photocatalytic activity of the samples prepared in 40 mmol/L zinc acetate solution would be the highest, and the methylene blue solution could be effectively degraded within 100 min.
引文
[1] FJUISHIMA A,HONDA K.Electrochemical photolysis of water at a semiconductor electrode [J].Nature,1972,238(5358):37-38.
    [2] MA Y J,WANG Z M,XU X F,et al.Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2 [J].Chinese Journal of Catalysis,2017,38(12):1956-1969.
    [3] BAI X J,SUN C P,LIU D,et al.Photocatalytic degradation of deoxynivalenol using graphene/ZnO hybrids in aqueous suspension [J].Applied Catalysis B:Environmental,2017,204:11-20.
    [4] KUNDU P,DESHPANDE P A,MADRAS G,et al.Nanoscale ZnO/CdS heterostructures with engineered interfaces for high photocatalytic activity under solar radiation [J].Journal of Materials Chemistry,2011,21(12):4209-4216.
    [5] TIAN C G,ZHANG Q,WU A P,et al.Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation [J].Chemical Communications,2012,48(23):2858-2860.
    [6] QI K Z,CHENG B,YU J G,et al.Review on the improvement of the photocatalytic and antibacterial activities of ZnO [J].Journal of Alloys and Compounds,2017,727:792-820.
    [7] YU A,QIAN J S,PAN H,et al.Micro-lotus constructed by Fe-doped ZnO hierarchically porous nanosheets:Preparation,characterization and gas sensing property [J].Sensors and Actuators B:Chemical,2011,158(1):9-16.
    [8] OJHA D P,JOSHI M K,HAN J K.Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite [J].Ceramics International,2017,43(1):1290-1297.
    [9] 韩承辉,李智渝,沈俭一.纳米TiO2-Cu2O可见光下光催化降解活性艳红及其机理研究 [J].材料导报,2014,28(14):4-8.
    [10] REN S T,WANG B Y,ZHANG H,et al.Sandwiched ZnO@Au@Cu2O nanorod films as efficient visible-light-driven plasmonic photocatalysts [J].Acs Applied Materials & Interfaces,2015,7(7):4066-4074.
    [11] XU J,CHEN Z H,ZAPIEN J A,et al.Surface engineering of ZnO nanostructures for semiconductor-sensitized solar cells [J].Advanced Materials,2014,26(31):5337-5367.
    [12] CAO Y Q,CHEN J,ZHOU H,et al.Photocatalytic activity and photocorrosion of atomic layer deposited ZnO ultrathin films for the degradation of methylene blue [J].Nanotechnology,2015,26(2):024002-024002.
    [13] LIANG W,CHEN J J,HU Y J.Chemical interactions between cement and E-glass fibers with a CaO-BaO-SiO2-TiO2 Coating [J].Journal of the American Ceramic Society,2005,88(12):3507-3508.
    [14] SAMAVATI A,NUR H,ISMAIL A F,et al.Radio frequency magnetron sputtered ZnO/SiO2/glass thin film:Role of ZnO thickness on structural and optical properties [J].Journal of Alloys and Compounds,2016,671:170-176.
    [15] ZHAO D Y,FENG J L,HUO Q S,et al.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J].Science,1998,279(5350):548-552.
    [16] 房洪杰,刘慧,闫芳,等.以三聚氰胺甲醛微球为模板制备介孔二氧化硅和二氧化钛空心微球 [J].硅酸盐学报,2015(2):215-221.
    [17] GALEDARI N A,RAHMANI M,TASBIHI M.Preparation,characterization,and application of ZnO@SiO2 core-shell structured catalyst for photocatalytic degradation of phenol [J].Environmental Science and Pollution Research,2017,24(14):1-9.
    [18] MOHAMED W S,ABU-DIEF A M.Synthesis,characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles [J].Journal of Physics and Chemistry of Solids,2018,116:375-385.
    [19] KUMAR R,ANA D,UMAR A,et al.Ag-doped ZnO nanoellipsoids:potential scaffold for photocatalytic and sensing applications [J].Talanta,2015,137:204-213.
    [20] ZHANG T Y,OYAMA T,AOSHIMA A,et al.Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation [J].Journal of Photochemistry and Photobiology A:Chemistry,2001,140(2):163-172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700