AgAuPd/meso-Co_3O_4高效甲醇氧化催化剂(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:AgAuPd/meso-Co_3O_4: High-performance catalysts for methanol oxidation
  • 作者:杨军 ; 刘雨溪 ; 邓积光 ; 赵星天 ; 张昆锋 ; 韩卓 ; 戴洪兴
  • 英文作者:Jun Yang;Yuxi Liu;Jiguang Deng;Xingtian Zhao;Kunfeng Zhang;Zhuo Han;Hongxing Dai;Beijing Key Laboratory for Green Catalysis and Separation,Key Laboratory of Beijing on Regional Air Pollution Control,Key Laboratory of Advanced Functional Materials,Education Ministry of China,Laboratory of Catalysis Chemistry and Nanoscience,Department of Chemistry and Chemical Engineering,College of Environmental and Energy Engineering,Beijing University of Technology;
  • 关键词:挥发性有机物 ; 介孔四氧化三钴 ; 负载贵金属催化剂 ; AgAuPd合金纳米粒子 ; 甲醇氧化
  • 英文关键词:Volatile organic compound;;Mesoporous cobalt oxide;;Supported noble metal catalyst;;AgAuPd alloy nanoparticle;;Methanol oxidation
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:北京工业大学环境与能源工程学院化学化工系绿色催化与分离北京市重点实验室区域大气复合污染防治北京市重点实验室先进功能材料教育部重点实验室催化化学与纳米科学实验室;
  • 出版日期:2019-05-07
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21677004,21876006,and 21622701);; the National High Technology Research and Development Program of China(863 Program,2015AA034603)~~
  • 语种:英文;
  • 页:CHUA201906007
  • 页数:12
  • CN:06
  • ISSN:21-1601/O6
  • 分类号:57-68
摘要
甲醇是重要的化工原料和溶剂,也是一种典型的挥发性有机物(VOCs),其排放会对人体和大气环境造成危害.迄今为止,最有效的消除低浓度VOCs的方法是催化氧化.该方法具有VOCs去除效率高、起燃温度低、设备简单且无二次污染等优点.众所周知,负载贵金属催化剂对VOCs氧化显示良好的低温活性,但反应气流中的水分会降低贵金属的催化性能.研究表明,与单一贵金属催化剂相比,贵金属合金催化剂不仅具有高的催化活性,而且还具有良好的水热稳定性.尽管已有文献报道了二元贵金属合金催化剂对VOCs的催化氧化,然而VOCs在三元贵金属合金上催化氧化的研究则较少.本文采用三维有序介孔结构的二氧化硅(KIT-6)硬模板法和聚乙烯醇保护的硼氢化钠还原法制备了0.68 wt%和0.93 wt%Ag_0.51Au_0.65Pd/meso-Co_3O_4三元贵金属合金催化剂以及0.28 wt%Ag/meso-Co_3O_4,0.35 wt%Au/meso-Co_3O_4和0.33 wt%Pd/meso-Co_3O_4单一贵金属催化剂.利用电感耦合等离子体-原子发射光谱(ICP-AES)、X射线衍射(XRD)、透射电子显微镜(TEM)、高角环形暗场-扫描透射电子显微镜(HAADF-STEM)、X射线光电子能谱(XPS)和氢气-程序升温还原技术表征了催化剂的物化性质.催化剂的活性评价在固定床石英微型反应器中进行,反应气组成为0.1%甲醇+氧气+氮气(平衡气),甲醇/氧气摩尔比为1/200,空速约为80000 mL g–1 h–1,利用气相色谱检测反应物和产物的浓度.广角度XRD结果表明具有立方晶相结构.XRD谱中未检测到Ag,Au和Pd的衍射峰,系贵金属负载量低且均匀分散在载体表面所致.贵金属粒径为2.8-4.5 nm.小角度XRD和TEM结果表明具有有序介孔结构.从HAADF-STEM照片可以观察到中的贵金属形成了Ag-Au-Pd合金.BET结果显示,所制得催化剂的比表面积为115-120 m~2/g,孔径为5.7-6.0 nm,孔容为0.15-0.16 cm3/g.XPS结果表明,贵金属与载体之间较强的相互作用使0.68 wt%Ag_(0.75)Au_(1.14)Pd/meso-Co_3O_4具有最低的表面摩尔比,从而使该催化剂表面拥有更多的氧空位,有利于吸附和活化氧气,提高表面吸附氧浓度,从而提高催化活性具有最低的还原温度(即最好的低温还原性),有利于催化活性的提高.因此,高分散的纳米粒子、高的吸附氧浓度、优良的低温还原性以及载体与粒子之间强的相互作用是0.68Ag_(0.75) Au_(1.14)Pd/meso-Co_3O_4具有最高催化活性(当空速为80000 mL g–1 h–1时和)的主要原因.在反应温度为110°C和空速为80000 mL g–1 h–1的条件下,向反应体系中分别引入3.0 vol%水蒸气和5.0 vol%二氧化碳,甲醇转化率分别下降6.0%和7.0%;当切断水和二氧化碳后,甲醇转化率均恢复到在无水和二氧化碳时的数值.因此,水和二氧化碳对该催化剂的失活是可逆的.换句话说,0.68 wt%Ag_(0.75)Au_(1.14)Pd/meso-Co_3O_4具有优良的水热稳定性和抗二氧化碳中毒能力.
        The meso-Co_3O_4 and Agx Auy Pd/meso-Co_3O_4 catalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected NaBH4 reduction methods, respectively. Various techniques were used to characterize physicochemical properties of these materials. Catalytic performance of the samples was evaluated for methanol combustion. The cubically crystallized Co_3O_4 support displayed a three-dimensionally ordered mesoporous structure. The supported noble metal nanoparticles(NPs) possessed a surface area of 115-125 m~2/g, with the noble NPs(average size = 2.8-4.5 nm) being uniformly dispersed on the surface of meso-Co_3O_4. Among all of the samples, 0.68 wt% Ag_(0.75) Au_(1.14) Pd/meso-Co_3O_4 showed the highest catalytic activity(T_(50%) = 100 °C and T_(90%) = 112 °C at a space velocity of 80000 m L(g~(–1) h~(–1)). The partial deactivation of the 0.68 wt% Ag_(0.75) Au_(1.14) Pd/meso-Co_3O_4 sample due to water vapor or carbon dioxide introduction was reversible. It is concluded that the good catalytic performance of 0.68 wt% Ag_(0.75) Au_(1.14 )Pd/meso-Co_3O_4 was associated with its highly dispersed Ag_(0.75) Au_(1.14) Pd alloy NPs, high adsorbed oxygen species concentration, good low-temperature reducibility, and strong interaction between Ag_(0.75) Au_(1.14) Pd alloy NPs and meso-Co_3O_4.
引文
[1]L.A.Calzada,S.E.Collins,C.W.Han,V.Ortalan,R.Zanella,Appl.Catal.B,2017,207,79-92.
    [2]N.G.Patel,P.D.Patel,V.S.Vaishnav,Sens.Actuat.B,2003,96,180-189.
    [3]A.Mirzaei,S.G.Leonardi,G.Neri,Ceram.Int.,2016,42,15119-15141.
    [4]W.L.Wang,Q.J.Meng,Y.H.Xue,X.L.Weng,P.F.Sun,Z.B.Wu,J.Catal.,2018,366,213-222.
    [5]S.C.Kim,W.G.Shim,Appl.Catal.B,2009,92,429-436.
    [6]F.J.Maldonado-Hódar,C.Moreno-Castilla,A.F.Pérez-Cadenas,Appl.Catal.B,2004,54,217-224.
    [7]A.M.Sica,J.H.Z.D.Santos,I.M.Baibich,C.E.Gigola,J.Mol.Catal.A,1999,137,287-295.
    [8]K.Persson,L.D.Pfefferle,W.Schwartz,A.Ersson,S.G.Jaras,Appl.Catal.B,2007,74,242-250.
    [9]J.Q.Jiao,Y.C.Wei,Y.L.Zhao,Z.Zhao,A.J.Duan,J.Liu,Y.Y.Pang,J.M.Li,G.Y.Jiang,Y.J.Wang,Appl.Catal.B,2017,209,228-239.
    [10]Y.C.Wei,X.X.Wu,Y.L.Zhao,L.Wang,Z.Zhao,X.T.Huang,J.Liu,J.M.Li,Appl.Catal.B,2018,236,445-457.
    [11]J.Xiong,Q.Q.Wu,X.L.Mei,J.Liu,Y.C.Wei,Z.Zhao,D.Wu,J.M.Li,ACS Catal.,2018,8,7915-7930.
    [12]Z.W.Wang,Y.X.Liu,T.Yang,J.G.Deng,S.H.Xie,H.X.Dai,Chin.J.Catal.,2017,38,207-216.
    [13]S.H.Xie,J.G.Deng,S.M.Zang,H.G.Yang,G.S.Guo,H.Arandiyan,H.X.Dai,J.Catal.,2015,322,38-48.
    [14]Y.Y.Guo,S.Zhang,J.Zhu,L.Q.Su,X.M.Xie,Z.Li,Appl.Surf.Sci.,2017,416,358-364.
    [15]S.H.Xie,Y.X.Liu,J.G.Deng,S.M.Zang,Z.H.Zhang,H.Arandiyan,H.X.Dai,Environ.Sci.Technol.,2017,51,2271-2279.
    [16]H.J.Sedjame,C.Fontaine,G.Lafaye,J.Barbier Jr.,Appl.Catal.B,2014,144,233-242.
    [17]B.Rivas,J.I.Gutierrez-Ortiz,R.Lopez-Fonseca,J.R.Gonzalez-Velasco,Appl.Catal.A,2006,314,54-63.
    [18]K.Okumura,T.Kobayashi,H.Tanaka,M.Niwa,Appl.Catal.B,2003,44,325-331.
    [19]Y.Ren,Z.Ma,P.G.Bruce,Chem.Soc.Rev.,2012,41,4909-4927.
    [20]D.Gu,F.Schüth,Chem.Soc.Rev.,2014,43,313-344.
    [21]Y.F.Wang,C.B.Zhang,F.D.Liu,H.He,Appl.Catal.B,2013,142-143,72-79.
    [22]X.M.Zhang,Y.Q.Deng,P.F.Tian,H.H.Shang,J.Xu,Y.F.Han,Appl.Catal.B,2016,191,179-191.
    [23]B.Y.Bai,J.H.Li,J.M.Hao,Appl.Catal.B,2015,164,241-250.
    [24]Q.Liu,L.C.Wang,M.Chen,Y.Cao,H.Y.He,K.N.Fan,J.Catal.,2009,263,104-113.
    [25]Z.X.Wu,J.G.Deng,Y.X.Liu,S.H.Xie,Y.Jiang,X.T.Zhao,J.Yang,H.Arandiyan,G.S.Guo,H.X.Dai,J.Catal.,2015,332,13-24.
    [26]Y.X.Liu,H.X.Dai,J.G.Deng,S.H.Xie,H.G.Yang,W.Tan,W.Han,Y.Jiang,G.S.Guo,J.Catal.,2014,309,408-418.
    [27]Z.X.Wu,J.G.Deng,S.H.Xie,H.G.Yang,X.T.Zhao,K.F.Zhang,H.X.Lin,H.X.Dai,G.S.Guo,Microporous Mesoporous Mater.,2016,224,311-322.
    [28]P.Xu,Z.X.Wu,J.G.Deng,Y.X.Liu,S.H.Xie,G.S.Guo,H.X.Dai,Chin.J.Catal.,2017,38,92-105.
    [29]Y.S.Xia,H.X.Dai,H.Y.Jiang,J.G.Deng,H.He,C.T.Au,Environ.Sci.Technol.,2009,43,8355-8360.
    [30]Y.S.Xia,H.X.Dai,L.Zhang,J.G.Deng,H.He,C.T.Au,Appl.Catal.B,2010,100,229-237.
    [31]F.Kleitz,S.H.Choi,R.Ryoo,Chem.Commun.,2003,2136-2137.
    [32]X.C.Zhang,J.Wang,L.C.Xuan,Z.B.Zhu,Q.J.Pan,K.Y.Shi,G.Zhang,J.Alloys Compd.,2018,768,190-197.
    [33]S.Dubey,J.Kumar,A.Kumar,Y.C.Sharma,Adv.Powder Technol.,2018,29,2583-2590.
    [34]S.R.Naik,A.V.Salker,S.M.Yusuf,S.S.Meena,J.Alloys Compd.,2013,566,54-61.
    [35]C.V.Schenck,J.G.Dillard,J.W.Murray,J.Colloid Interface Sci.,1983,95,398-409.
    [36]G.J.Zhang,Y.E.Wang,X.Wang,Y.Chen,Y.M.Zhou,Y.W.Tang,L.D.Lu,J.C.Bao,T.H.Lu,Appl.Catal.B,2011,102,614-619.
    [37]G.Corro,E.Vidal,S.Cebada,U.Pal,F.Banuelos,D.Vargas,E.Guilleminot,Appl.Catal.B,2017,216,1-10.
    [38]X.She,M.Flytzani-Stephanopoulos,J.Catal.,2006,237,79-93.
    [39]A.K.Sinha,K.Suzuki,M.Takahara,H.Azuma,T.Nonaka,K.Fukumoto,Angew.Chem.Int.Ed.,2007,46,2891-2894.
    [40]K.R.Priolkar,P.Bera,P.R.Sarode,M.S.Hegde,S.Emura,R.Kumashiro,N.P.Lalla,Chem.Mater.,2002,14,2120-2128.
    [41]H.Gabasch,K.Hayek,B.Klo1tzer,W.Unterberger,E.Kleimenov,D.Teschner,S.Zafeiratos,M.Halvecker,A.Knop-Gericke,R.Schlolg,B.Aszalos-Kiss,D.Zemlyanov,J.Phys.Chem.C,2007,111,7957-7962.
    [42]A.R.Belambe,R.Oukaci,J.G.Goodwin Jr.,J.Catal.,1997,166,8-15.
    [43]B.Solsona,T.E.Davies,T.Garcia,I.Vazquez,A.Dejoz,S.H.Taylor,Appl.Catal.B,2008,84,176-184.
    [44]K.D.Chen,S.B.Xie,A.T.Bell,E.Iglesia,J.Catal.,2001,198,232-242.
    [45]H.X.Dai,A.T.Bell,E.Iglesia,J.Catal.,2004,221,491-499.
    [46]Y.S.Xia,H.X.Dai,H.Y.Jiang,L.Zhang,J.G.Deng,Y.X.Liu,J.Hazard.Mater.,2011,186,84-91.
    [47]Y.S.Xia,H.X.Dai,H.Y.Jiang,L.Zhang,Catal.Commun.,2010,11,1171-1175.
    [48]Y.X.Liu,H.X.Dai,J.G.Deng,Y.C.Du,X.W.Li,Z.X.Zhao,Y.Wang,B.Z.Gao,H.G.Yang,Appl.Catal.B,2013,140-141,493-505.
    [49]N.Shimoda,S.Umehara,M.Kasahara,T.Hongoa,A.Yamazaki,S.Satokaw,Appl.Catal.A,2015,507,56-64.
    [50]Y.J.Luo,Y.H.Xiao,G.H.Cai,Y.Zheng,K.M.Wei,Fuel,2012,93,533-538.
    [51]S.H.Xie,H.X.Dai,J.G.Deng,Y.X.Liu,H.G.Yang,Y.Jiang,W.Tan,A.S.Ao,G.S.Guo,Nanoscale,2013,5,11207-11219.
    [52]S.H.Xie,Y.X.Liu,J.G.Deng,X.T.Zhao,J.Yang,K.F.Zhang,Z.Han,H.Arandiyan,H.X.Dai,Appl.Catal.B,2017,206,221-232.
    [53]X.Y.Li,Y.X.Liu,J.G.Deng,S.H.Xie,X.T.Zhao,Y.Zhang,K.F.Zhang,H.Arandiyan,G.S.Guo,H.X.Dai,Appl.Surf.Sci.,2017,403,590-600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700