汽车轻量化及其低密度钢板研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Automobile Lightweight and the Research Status of Low Density Steel Sheet
  • 作者:吴张炜 ; 金炀
  • 英文作者:WU Zhangwei;JIN Yang;Research Institute,Baoshan Iron and Steel Co.,Ltd.,State Key Laboratory of Development and Application Technology of Automotive Steels;
  • 关键词:汽车轻量化 ; 高Al含量 ; 低密度钢
  • 英文关键词:automobile lightweight;;high Al content;;low density steel
  • 中文刊名:SDYJ
  • 英文刊名:Shandong Metallurgy
  • 机构:宝钢股份中央研究院汽车用钢开发与应用技术国家重点实验室;
  • 出版日期:2019-06-20
  • 出版单位:山东冶金
  • 年:2019
  • 期:v.41;No.215
  • 语种:中文;
  • 页:SDYJ201903015
  • 页数:6
  • CN:03
  • ISSN:37-1203/TF
  • 分类号:31-35+38
摘要
汽车材料选择是实现汽车轻量化的重要途径。面对轻质材料的挑战,在保证强塑性的前提下,通过降低钢板密度实现汽车轻量化引起了汽车工业的重视,每加入6%~8%的Al,汽车可减重8%~10%。介绍了近年来几种高Al低密度钢的最新研究进展,并对其今后的研发方向进行了展望。
        The selection of automotive materials is an important way to achieve automobile lightweight. Face to the challenge of lightweight materials, to lower the steel density for achieving automobile lightweight is aroused great interest in the automotive industry, automobile can be reduced weight of 8% to 10% by adding 6% to 8% Al. In this article, we introduce the latest research progress of several high Al low density steels, and discuss their future research directions.
引文
[1] D.W. Suh,N.J. Kim.Low-density steels[J]. Scripta Materialia,2013,68(6):337-338.
    [2]张春雷,王金旗,张兴虎.汽车轻量化用钢的新思路-低密度钢板[J].鞍钢技术,2006(5):10-13.
    [3]王利,陆匠心.汽车轻量化及其材料的经济选用[J].汽车工艺与材料,2013(1):1-11.
    [4]马鸣图.先进汽车用钢[M].北京:化学工业出版社,2008.
    [5]姚贵升.汽车用钢应用技术[M].北京:机械工业出版社,2008.
    [6]康永林.现代汽车板工艺及成形理论与技术[M].北京:冶金工业出版社,2009.
    [7] A. Grajcar,R. Kuziak,W. Zalecki. Third generation of AHSS with increased fraction of retained austenite for the automotive industry[J]. Archives of Civil and Mechanical Engineering,2012(3):334-341.
    [8] H. Aydin. Development of 3rd generation AHSS with medium Mn content alloying compositions[J]. Materials Science and Engineering:A,2013,564:501-508.
    [9]董瀚,曹文全,时捷,等.第3代汽车钢的组织与性能调控技术[J].钢铁,2011,46(6):1-11.
    [10]张志勤,黄维,高真凤.汽车用第3代先进高强度钢的研发进展[J].特殊钢,2013,34(1):16-21.
    [11] M. Palm. Concepts derived from phase diagram studies for the strengthening of Fe–Al-based alloys[J]. Intermetallics,2005(12):1 286-1 295.
    [12] N.A. Dubrovinskaia,A.Karlsson. Experimental study of thermal expansion and phase transformations in iron-rich Fe-AI alloys[J].Calphad,1999,23(1):69-84.
    [13] D.G. Morris.Microstructure and mechanical properties of an FeAl alloy of low aluminium content[J]. Materials Science and Engineering:A,1995,191(1/2):91-104.
    [14] J. Herrmann,G. Inden,G. Sauthoff. Deformation behaviour of iron-rich iron-aluminium alloys at low temperatures[J]. Acta Materialia,2003,51(11):2 847-2 857.
    [15] R. Rana,C. Liu,R. K. Ray. Low-density low-carbon Fe–Al ferritic steels[J].Scripta Materialia,2013,68(6):354-359.
    [16] C. Castan,F. Montheillet,A. Perlade.Dynamic recrystallization mechanisms of an Fe–8%Al low density steel under hot rolling conditions[J].Scripta Materialia,2013,68(6):360-364.
    [17] H. Kim,D.-W. Suh,N. J. Kim. Fe-Al-Mn–C lightweight structural alloys:a review on the microstructures and mechanical properties[J].Science and Technology of Advanced Materials,2013,14(1):1-11.
    [18] H.-J. Lee.Thermodynamic analysis of the effect of C,Mn and Al on microstructural evolution of lightweight steels[J].Scripta Materialia,2013,68(6):339-342.
    [19] O. Grassel,G. Frommeyer,C. Derder and H. Hofmann. Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels[J].Le Journal de Physique IV,1997,7(5):383-388.
    [20] J. Kim,S.-J.Lee,B.C. De Cooman.Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity[J].Scripta Materialia,2011,65(4):363-366.
    [21] J.S. Jeong.In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels[J].Acta Materialia,2012,60(5):2 290-2 299.
    [22] Georg Frommeyer,Udo Brüx. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J]. Steel research international,2006,77(7):627-633.
    [23] J.D. Yoo,K.-T. Park. Microband-induced plasticity in a high Mn–Al–C light steel[J]. Materials Science and Engineering:A,2008,496(1/2):417-424.
    [24] J. Jeong. Isothermal precipitation behavior ofκ-carbide in the Fe–9Mn–6Al–0.15C light-weight steel with a multiphase microstructure[J]. Journal of Alloys and Compounds,2013,574:299-304.
    [25] S. Shin. Correlation of Microstructure and Cracking Phenomenon Occurring during Hot Rolling of Lightweight Steel Plates[J].Metallurgical andMaterialsTransactionsA,2010,41(1):138-148.
    [26] S. Han. Effect of Carbon Content on Cracking Phenomenon Occurring during Cold Rolling of Three Light-Weight Steel Plates[J]. Metallurgical and Materials Transactions A,2011,42(1):138-146.
    [27] S.S. Sohn. Effects of aluminum content on cracking phenomenon occurring during cold rolling of three ferrite-based lightweight steel[J]. Acta Materialia,2013,61(15):5 626-5 635.
    [28] Y.-U. Heo. Influence of Silicon in Low Density Fe-C-Mn-Al Steel[J]. Metallurgical and Materials Transactions A,2012,43(6):1 731-1 735.
    [29] S. Han. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels[J].Metallurgical and Materials Transactions A,2012,43(3):843-853.
    [30] D.-W. Suh. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel[J]. Metallurgical and Materials Transactions A,2009,41(2):397-408.
    [31] C.-H. Seo. Deformation behavior of ferrite–austenite duplex lightweight Fe–Mn–Al–C steel[J]. Scripta Materialia,2012,66(8):519-522.
    [32] S. J. Park. Microstructure and tensile behavior of duplex lowdensity steel containing 5mass%aluminum[J]. Scripta Materialia,2013,68(6):365-369.
    [33] S. S. Sohn. Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C–3.5 Mn–5.8 Al lightweight steel[J].Acta Materialia,2013,61(13):5 050-5 066.
    [34] K. Lee. Dual-scale correlation of mechanical behavior in duplex low-density steel[J]. Scripta Mater.2013,69(8):618-621.
    [35] S. Chatterjee,M. Murugananth,H.K.D.H. Bhadeshia,et al.δ-TRIP steel[J]. Materials Science and Technology,2007,23(7):819-827.
    [36] H.L. Yi,K.Y. Lee,H.K.D.H. Bhadeshia,et al. Mechanical stabilisation of retained austenite inδ-TRIP steel[J]. Materials Science and Engineering:A,2011,528(18):5 900-5 903.
    [37] H.L. Yi,K.Y. Lee,H.K.D.H. Bhadeshia,et al. Extraordinary ductility in Al-bearingδ-TRIP steel[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,2010,467(2125):234-243.
    [38] Y.J. Choi,D.W. Suh,H.K.D.H. Bhadeshia,et al. Retention ofδ-ferrite in aluminium-alloyed TRIP-assisted steels[M].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700