固体发动机药柱应力应变仿真与试验验证研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Stress-Strain Simulation and Experimental Validation for the Solid Motor Grain
  • 作者:黄波 ; 刘杰 ; 罗天元 ; 胥泽奇 ; 张凯
  • 英文作者:HUANG Bo;LIU Jie;LUO Tian-yuan;XU Ze-qi;ZHANG Kai;South West Institute of Technical Engineering;Chongqing Engineering Research Center for Environmental Corrosion and Protection;
  • 关键词:药柱 ; 贮存性能 ; 应力-应变 ; 有限元 ; 试验验证
  • 英文关键词:grain;;storage performance;;stress-strain;;finite element;;experimental validation
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:西南技术工程研究所;重庆市环境腐蚀与防护工程技术研究中心;
  • 出版日期:2015-02-15
  • 出版单位:装备环境工程
  • 年:2015
  • 期:v.12
  • 语种:中文;
  • 页:JSCX201501004
  • 页数:6
  • CN:01
  • ISSN:50-1170/X
  • 分类号:23-27+100
摘要
目的研究某导弹固体发动机药柱在不同环境温度下的性能演变规律。方法利用ABAQUS有限元分析软件,仿真计算了药柱在-40,20,50℃下的应力应变情况,在此基础上通过推进剂拉伸应力松弛试验对仿真结果进行验证分析。结果最大应力应变发生在头部人工脱粘层的根部,药柱内部沿径向越靠近内孔表面,应力应变的数值越大,沿药柱的轴向,内孔表面的最大应力应变发生在靠近药柱中间位置。结论线粘弹性本构关系模型在较低应变水平下可以很好地模拟出推进剂的力学行为,当应变水平在14.3%以下时,试验和仿真的相对误差能控制在10%以内。
        Objective To study the performance evolution rule of missile propellant at different ambient temperatures. Methods Using ABAQUS finite element analysis software, the stress and strain of the propellant were analyzed at three different ambient temperatures through the simulation calculation of grain structures. In addition, the propellant tensile stress relaxation test analyses were used to validate the simulation results. Results The maximum stress-strain occurred at the bottom of the head artificial debonding layer. In the internal grain, post along the radial, the closer to the surface of the inner hole, the greater value of stress and strain; while along the axial grain, the maximum stress-strain at the surface of the inner hole occurred near the middle position of the grain. Conclusion At low strain levels, the linear viscoelastic mechanical behavior and constitutive model could simulate the propellant well, when the strain level was below 14.3%, the relative error between the simulation and the test results could be controlled within10%.
引文
[1]张昊,彭松,庞爱民.固体推进剂应力和应变与使用寿命关系[J].推进技术,2006,27(4):372—375.ZHANG Hao,PENG Song,PANG Ai-min.Relationship between Stress-Strain and Service Life of Solid Propellant[J].Journal of Propulsion Technology,2006,27(4):372—375.
    [2]张兴高,张炜,王春华,等.定应变作用下NEPE推进剂老化特性及寿命预估研究[J].国防科技大学学报,2009,31(3):20—24.ZHANG Xing-gao,ZHANG-Wei,WANG Chun-hua,et al.The Aging Property and Life Prediction of NEPE Propellant under Constant Strain[J].Journal of National University of Defense Technology,2009,31(3):20—24.
    [3]甄华生,孙玉蓉,苑玲.固体火箭发动机药柱内应力的产生与预防[J].上海航天,2002(5):36—38.ZHEN Hua-sheng,SUN Yu-rong,YUAN Ling.The Analysis and Prevention of Internal Stress in the Solid Rocket Motor Grain Flaw[J].Aerospace Shanghai,2002(5):36—38.
    [4]鲁国林,罗怀德.定应变下丁羟推进剂贮存寿命预估[J].推进技术,2000,21(1):79—81.LU Guo-lin,LUO Huai-de.Storage Life Prediction for HTPB Propellant under Constant Strain[J].Journal of Propulsion Technology,2000,21(1):79—81.
    [5]杜建科,朱祖念,张善祁,等.固体发动机药柱损伤粘弹有限元分析[J].固体火箭技术,2001,24(1):1—6.DU Jian-ke,ZHU Zu-nian,ZHANG Shan-qi,et al.A Finite Element Analysis of Viscoelasticity for SRM Grain with Damages[J].Journal of Solid Rocket Technology,2001,24(1):1—6.
    [6]王铮.药柱结构完整性的可靠性分析[J].固体火箭技术,2001,24(1):16—18.WANG Zheng.Reliability Analysis on Structural Integrity of Propellant Grains[J].Journal of Solid Rocket Technology,2001,24(1):16—18.
    [7]赵永俊,张兴高,张炜,等.国外固体推进剂及其粘结界面贮存老化研究进展[J].火箭推进,2008,34(3):35—38.ZHAO Yong-jun,ZHANG Xing-gao,ZHANG Wei,et al.Review on the Aging Property of Solid Propellant and Bonding Interface Abroad[J].Journal of Rocket Propulsion,2008,34(3):35—38.
    [8]阮崇智.大型固体火箭发动机研制的关键技术[J].固体火箭技术,2005,28(1):23—28.RUAN Chong-zhi.Critical Techniques in Development of Large-size Solid Rocket Motors[J].Journal of Solid Rocket Technology,2005,28(1):23—28.
    [9]张志峰,马岑睿,高峰,等.火箭发动机固体推进剂老化研究[J].空军工程大学学报(自然科学版),2009,10(5):5—9.ZHANG Zhi-feng,MA Cen-rui,GAO Feng,et al.Summary of Study of Rocket Engine Solid Propellant Aging[J].Journal of Air Force Engineering University(Natural Science Edition),2009,10(5):5—9.
    [10]潘奠华,胡明勇.固化降温过程中固体火箭发动机材料参数的影响分析[J].烟台大学学报(自然科学与工程版),2006,19(1):63—67.PAN Dian-hua,HU Ming-yong.Influence of Solid Rocket Engine Material Parameters when Solidifying[J].Journal of Yantai University(Natural Science and Engineering Edition),2006,19(1):63—67.
    [11]赵培仲,文庆珍,朱金华.时温等效方程的研究[J].橡胶工业,2005,52(3):142—145ZHAO Pei-zhong,WEN Qing-zhen,ZHU Jin-hua.Study on the Time Temperature Equivalent Equation[J].Rubber Industry,2005,52(3):142—145.
    [12]潘文庚,王晓鸣,陈瑞,等.环境温度对发动机药柱影响分析[J].南京理工大学学报(自然科学版),2009,33(1):117—121.PAN Wen-geng,WANG Xiao-ming,CHEN Rui,et al.Effect of Environmental Temperature on Storage Rocket Motor Grain[J].Journal of Nanjing University of Science and Technology(Natural Science),2009,33(1):117—121.
    [13]郑路,常新龙,王斌.温湿度变化对固体火箭发动机粘接界面的影响[J].中国胶粘剂,2007,16(6):16—18.ZHENG Lu,CHANG Xin-long,WANG Bin.Effect for Temperature and Humidity Change on SRM Adhint Interface[J].China Adhesives,2007,16(6):16—18.
    [14]原渭兰,李军伟.固体火箭发动机对交变环境温度瞬态响应的研究[J].海军航空工程学院学报,2008,23(5):521—523.YUAN Wei-lan,LI Jun-wei.Research on the Respond of the Solid Propellant Motor to the Alternating Environmental Temperature[J].Journal of Naval Aeronautical and Astronautical University,2008,23(5):521—523.
    [15]李九天,雷勇军,唐国金,等.固体火箭发动机药柱表面裂纹分析[J].固体火箭技术,2008,31(5):471—474.LI Jiu-tian,LEI Yong-jun,TANG Guo-jin,et al.Analysis on Surface Crack of Solid Rocket Motor Grain[J].Journal of Solid Rocket Technology,2008,31(5):471—474.
    [16]袁端才,雷勇军,唐国金,等.长期贮存的固体发动机药柱脱粘界面裂纹分析[J].国防科技大学学报,2006,28(3):19—23.YUAN Duan-cai,LEI Yong-jun,TANG Guo-jin,et al.Analysis of the Interfacial Crack in Debonded Layer of Long Term Storage Solid Motor Grain[J].Journal of National University of Defense Technology,2006,28(3):19—23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700