3种水生植物腐解过程中磷营养物质迁移、转化过程研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Migration and transformation of phosphorus nutrients in the decomposition process of three aquatic plants
  • 作者:汤志凯 ; 张毅敏 ; 杨飞 ; 朱月明 ; 徐斌 ; 巴翠翠 ; 顾诗云 ; 张志伟 ; 冯胜
  • 英文作者:TANG Zhikai;ZHANG Yimin;YANG Fei;ZHU Yuemin;XU Bin;BA Cuicui;GU Shiyun;ZHANG Zhiwei;FENG Sheng;School of Environmental and Safety Engineering,Changzhou University;Nanjing Institute of Environmental Sciences,Ministry of Environmental Protection;
  • 关键词:水生植物 ; 腐解速率 ; ; 迁移转化
  • 英文关键词:aquatic plants;;decay rate;;phosphorus;;migration and conversion
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:常州大学环境与安全工程学院;环境保护部南京环境科学研究所;
  • 出版日期:2018-10-23 16:55
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:国家重大水体污染治理专项(No.2017ZX07202006)
  • 语种:中文;
  • 页:HJXX201903009
  • 页数:6
  • CN:03
  • ISSN:11-1843/X
  • 分类号:70-75
摘要
室内模拟沉水植物狐尾藻(Myriophyllum verticillatum L)、浮水植物菱角(Trapa bispinosa Roxb)、挺水植物荷花(Lotus flower)在5.7 g·L~(-1)初始生物量密度下的腐解过程,并探究该过程中磷营养物质迁移、转化规律.结果发现,3种植物腐解速率在第2 d上升至最大值(分别为1.075、1.455、1.16 g·d~(-1))后出现下降-上升-下降的变化规律,并且在整个腐解周期内种间差异性显著(p<0.01),造成整个腐解周期内狐尾藻、菱角、荷花3种植物平均磷释放速率分别为0.456、0.670、0.537 mg·g~(-1),且以无机磷酸盐为主;水中释放的磷在底泥吸附及其自身沉降等作用下,明显向底泥迁移转化,水中磷含量下降,最终在试验结束时恢复至初始水平(0.5 mg·L~(-1));该研究可为湖泊水生植被系统的修复或重建提供科学参考.
        The decomposition processes of submerged plant Myriophyllum verticillatum L, floating plant Trapa bispinosa Roxb and emerged plant Lotus flower were simulated in the laboratory at initial biomass density of 5.7 g·L~(-1), and the migration and conversion rules of phosphorus in the process were studied. The results showed that the variation pattern of decreasing, ascending and descending appeared after the decomposition rate increased to the maximum at 2 d(1.075,1.455,1.16 g·d~(-1) respectively), and there were significant difference in the whole process of decomposition(p<0.01), while the average phosphorus release rate were 0.456, 0.670, 0.537 mg·g~(-1) respectively in the whole decay period respectively for Myriophyllum verticillatum L, Trapa bispinosa Roxb, Lotus flower, and most of all the matter released were inorganic phosphate; The phosphorus released in the water were migrated and converted to the sediment obviously under the action of sediment adsorption and its own sedimentation, and the concentration of phosphorus in the water decreased, and finally turned to the initial level(0.5 mg·L~(-1)) at the end of the test. This study can provide scientific reference for recovering or rebuilding the aquatic vegetation system in lake.
引文
Brigolin D, Lovato T, Rubino A, et al. 2011. Coupling early-diagenesis and pelagic biogechemical models for estimating the seasonal variability of N and P fluxes at the sediment-water interface:Application to the northwestern Adriatic coastal zone[J]. Jouranl of Marine Systems,87:239-255
    曹培培,刘茂松,唐金艳,等. 2014. 几种水生植物腐解过程的比较研究[J]. 生态学报,34(14):3848-3858
    陈永川,汤利. 2005. 沉积物-水体界面氮磷的迁移转化规律研究进展[J]. 云南农业大学学报,20(4):527-531
    Davis S M. 1991. Growth,decomposition,and nutrient retention of Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades[J]. Aquatic Botany,40(3):203-224
    Eli?ka R, Dagmara S. 2007. Wetland macrophyte decomposition under different nutrient condititions:Relationships between decompositon rate,enzyme activites and microbial biomass[J]. Soil Biology&Biochemistry,39:526-538
    樊海川,周林飞,白庚沐. 2018. 石佛寺人工湿地不同水生植物区域磷的沉积特征分析[J]. 水电能源科学,36(5):39-42
    Gopal B. 1999.Natual and constructed wetlands for wastewater treatment:potentials and problems[J]. Water Science and Technology, 40(3):27-35
    耿荣妹,胡小贞,许秋瑾,等. 2016. 太湖东岸湖滨带水生植物特征及影响因素分析[J]. 环境科学与技术,39(12):17-22
    顾久君,金朝晖,刘振英. 2008. 乌梁素海沉水植物腐烂分解试验研究[J]. 干旱区资源与环境,22(4):181-184
    Han C, Ding S M, Yao L, et al. 2015. Dynamics of phosphorus-iron-sulfur at the sediment-water interface influenced by algae blooms decomposition[J]. Journal of Hazardous Materials,300:329-337
    厉恩华,刘贵华,李伟. 2006. 洪湖三种水生植物的分解速率及氮、磷动态[J]. 中国环境科学,26(6):667-671
    李文朝,陈开宁,吴庆龙,等. 2001. 东太湖水生植物生物质腐烂分解实验[J]. 湖泊科学,13(4):331-336
    李小龙. 2006. 铜绿微囊藻(Microcystis aeruginoss)和玫瑰拟衣藻(Chloromonasrosae)光合作用特征、营养生长动力学及相互竞争研究[D]. 北京:中国科学院研究生院
    李雪英,骆敏聪,孙省利. 2011. 湛江特呈岛红树林区底泥TOC的释放研究[J]. 环境科学与技术,34(1):34-37
    Olson J S. 1963. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology,44(2):322-331
    Pettit N,Davies T,Fellman J. 2012. Leaf litter chemistry,decomposition and assimilation by macroinvertebrates in two tropical streams[J]. Hydrobiologia,680(1):63
    苏胜齐,姚维志. 2002. 沉水植物与环境关系评述[J]. 农业环境保护,21(6):570-573
    Sulu-Gambari F, Seitaj D, Meysman F J R, et al. 2015. Cable bacteria control iron-phosphorus dynamics in sediments of a coastal hypoxic basin[J]. Environmental Science & Technology,50:1227-1233
    Wu S Q, He S B, Zhou W L, et al. 2017. Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland[J]. Environmental Pollution,231(1):1122-1133
    王国祥,濮培民,张圣照,等. 1998. 用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J]. 植物资源与环境,7(2):35-41
    Wang G X, Zhang L M, Chua H, et al. 2009. A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes[J]. Ecological Engineering,35(4):582-590
    Wang J,Huang J H. 2001. Comparison of major nutrient release patterns in lesf litters decomposition in warm temperate zone of China[J]. Acta Phytoecologica Sinica,25(3):375-380
    汪院生. 2013. 滆湖水环境演变及其原因分析[J]. 水利规划与设计,8:37-40
    姚佳,杨飞,张毅敏,等. 2017. 黑藻叶、茎腐解释放溶解性有机物的特性[J]. 中国环境科学,37(11):4294-4303
    张奋清,王丽敏,吴利斌,等. 2004. 乌梁素海氮循环转化过程的初探[J]. 内蒙古农业大学学报,25(2):31-34
    Zhang W Q, Jin X, Meng X, et al. 2018. Phosphorus transformations at the sediment-water interface in shallow freshwater ecosystems caused by decomposition of plant debris[J]. Chemosphere,201:328-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700