大气污染物干沉降速度和通量的计算方法比较——以南京仙林地区为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparison of Methods for Dry Deposition Velocity and Flux Estimation of Atmospheric Pollutants——A Case Study in Xianlin District, Nanjing
  • 作者:赵雄飞 ; 王体健 ; 黄满堂 ; 杨帆 ; 杨丹丹 ; 金龙山
  • 英文作者:ZHAO Xiong-fei;WANG Ti-jian;HUANG Man-tang;YANG-Fan;YANG Dan-dan;JIN Long-shan;School of Atmospheric Sciences,Nanjing University;
  • 关键词:干沉降通量 ; 干沉降速度 ; 浓度法 ; 梯度法
  • 英文关键词:dry deposition flux;;dry deposition velocity;;inferential method;;gradient method
  • 中文刊名:JSCX
  • 英文刊名:Equipment Environmental Engineering
  • 机构:南京大学大气科学学院;
  • 出版日期:2019-06-25
  • 出版单位:装备环境工程
  • 年:2019
  • 期:v.16
  • 基金:国家重大科技研发项目(2017YFC0210106,2016YFC0203303);; 国家自然科学基金项目(41575145,91544230)
  • 语种:中文;
  • 页:JSCX201906021
  • 页数:9
  • CN:06
  • ISSN:50-1170/X
  • 分类号:139-147
摘要
目的基于不同方法对大气污染物干沉降速度和通量的估计存在差异,开展比较研究。方法 2016年9月至2017年9月,在南京大学仙林校区,基于75 m观测塔,对大气中常见的六种污染物二氧化硫(SO_2)、一氧化氮(CO)、二氧化氮(NO_2)、臭氧(O_3)、一氧化碳(CO)、细颗粒物(PM_(2.5))的浓度和气象要素进行连续观测。利用三层阻力模型计算大气污染物的干沉降速度,利用浓度法和梯度法计算干沉降通量,并对两种方法进行比较。结果 SO_2、NO、NO_2、O_3、CO、PM_(2.5)的平均干沉降速度分别是0.270、0.019、0.089、0.449、0.038、0.147 cm/s。干沉降速度具有明显的日变化特征,一般情况下,白天大于夜间,在午后出现最大值。整个观测期间,采用浓度法计算得到的SO_2、NO、NO_2、O_3、CO、PM_(2.5)干沉降通量分别为0.034、0.008、0.037、0.263、0.354、0.049μg/(m~2·s),采用梯度法得到的干沉降通量分别为0.04、0.00193、0.035、0.278、0.192、0.063μg/(m~2·s)。结论对于NO、O_3、PM_(2.5),浓度法和梯度法计算的干沉降通量具有较好的一致性。梯度法估计干沉降通量时很大程度上依赖于大气污染物浓度梯度测量的准确性,浓度法估计干沉降通量则更多依赖于干沉降速度计算的准确性。
        Objective To compare the difference of dry deposition velocity and flux of atmospheric pollutants estimated with different methods. Methods Based on the 75 m observation tower, six pollutants concentration in the atmosphere, such as sulfur dioxide(SO_2), nitrogen monoxide(NO), nitrogen dioxide(NO_2), ozone(O_3), carbon monoxide(CO), and fine particulate matter(PM_(2.5)) and meteorological elements were observed at the Xianlin Campus of Nanjing University during 13 months(September2016 to September 2017). The dry deposition velocities of atmospheric pollutants were calculated by the three-layer resistance model and the dry deposition fluxes ware calculated by the inferential method and the gradient method; and then the two methods were compared. Results The average dry deposition velocities of SO_2, NO, NO_2, O_3, CO and PM_(2.5) were 0.270, 0.019,0.089, 0.449, 0.038 and 0.147 cm/s respectively. The dry deposition velocity had obvious daily variation characteristics. Generally, the variation in the daytime was greater than that in the nighttime, and the maximum value appeared in the afternoon. During the whole observation period, the dry deposition fluxes of SO_2, NO, NO_2, O_3, CO and PM_(2.5) calculated by the inferential method were 0.034 0.008, 0.037, 0.263, 0.354, 0.049 μg/(m~2·s) respectively, and the dry deposition fluxes obtained by the gradient method were 0.04, 0.00193, 0.035, 0.278, 0.192, 63 μg/(m~2·s) respectively. Conclusions For NO, O_3, PM_(2.5), the dry deposition flux calculated by inferential method and gradient method has good consistency. Estimation of the dry deposition flux by the gradient method largely depends on the accuracy of the concentration gradient measurement. Estimation of the dry deposition by the concentration method more depends on the calculation accuracy of the dry deposition rate.
引文
[1]苏航,王自发,朱彬,等.北京奥运会前后静稳天气条件下SO2和NO2干沉降模拟[J].气候与环境研究,2010,15(5):636-642.
    [2]APSIMON H M,BARKER B M,KAYIN S.Modelling Studies of the Atmospheric Release and Transport of Ammonia in Anticyclonic Episodes[J].Atmospheric Environment,1994,28(4):665-678.
    [3]SAKURAI T,FUJITA S I,HAYAMI H,et al.A Case Study of High Ammonia Concentration in the Nighttime by Means of Modeling Analysis in the Kanto Region of Japan[J].Atmospheric Environment,2003,37(31):4461-4465.
    [4]DORE A J,THEOBALD M R,KRYZA M,et al.Modelling the Deposition of Reduced Nitrogen at Different Scales in the United Kingdom[C]//Proceeding of the 29th NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application.Aveiro,Portugal,2007.
    [5]HELLSTEN S,DRAGOSITS U,PLACE C J,et al.Modelling the Spatial Distribution of Ammonia Emissions in the UK[J].Environmental Pollution,2008,154(3):370-379.
    [6]WALKER J,SPENCE P,KIMBROUGH S,et al.Inferential Model Estimates of Ammonia Dry Deposition in the Vicinity of a Swine Production Facility[J].Atmospheric Environment,2008,42(14):3407-3418.
    [7]KRYZA M,DORE A J,B??A??M,et al.Modelling Deposition and Air Concentration of Reduced Nitrogen in Poland and Sensitivity to Variability in Annual Meteorology[J].Journal of Environmental Management,2011,92(4):1225-1236.
    [8]WESELY M L,COOK D R,HART R L,et al.Speer Measurements and Parametrization of Article Sulfur Deposition over Grass[J]J Geophys Res,1985,90:2131-2143
    [9]GIORGI F.A Particle Dry-deposition Parameterization Scheme for Use in Tracer Transport Models[J].Journal of Geophysical Research Atmospheres,1986,91(D9):9794-9806.
    [10]PADRO J,DEN HARTOG G,NEUMANN H H.An Investigation of the ADOM Dry Deposition Module Using Summertime O3 Measurements Above a Deciduous Forest[J].Atmospheric Environment Part A General Topics,1991,25(8):1689-1704.
    [11]ERISMAN J W,VAN PUL A,WYERS P.Parametrization of Surface Resistance for the Quantification of Atmospheric Deposition of Acidifying Pollutants and Ozone[J].Atmospheric Environment,1994,28(16):2595-2607.
    [12]PADRO J.Summary of Ozone Dry Deposition Velocity Measurements and Model Estimates over Vineyard,Cotton,Grass and Deciduous Forest in Summer[J].Atmospheric Environment,1996,30(13):2360-2369.
    [13]WESELY M L,DOSKEY P V,SHANNON J D.Deposition Parameterizations for the Industrial Source Complex(ISC3)Model[R].Illinois:Environmental Research Division,Argonne National Laboratory 9700 South Cass Avenue Argonne,2002.
    [14]ZHANG L,BROOK J R,VET R.A Revised Parameterization for Gaseous Dry Deposition in Air-quality Models[J].Atmospheric Chemistry and Physics,2003,3(6):2067-2082.
    [15]KOR P,KHARRAT R.Modeling of Asphaltene Particle Deposition from Turbulent oil Flow in Tubing:Model Validation and a Parametric Study[J].Petroleum,2016,2(4):393-398.
    [16]PILEGAARD K,HUMMELSH?J P,JENSEN N O.Fluxes of Ozone and Nitrogen Dioxide Measured by Eddt Correlation over a Harvested Wheat Field[J].Atmospheric Environment,1998,32(7):1167-1177.
    [17]GEROSA G,VITALE M,FINCO A,et al.Ozone Uptake by an Evergreen Mediterranean Forest(Quercus Ilex)in Italy.Part I:Micrometeorological Flux Measurements and Flux Partitioning[J].Atmospheric Environment,2005,39(18):3255-3266.
    [18]HORVATH L,WEIDINGER T,NAGY Z.Estimation of Dry Deposition Velocities of Nitric Oxide,Sulfur Dioxide,and Ozone by the Gradient Method Above Short Vegetation during the Tract Campaign[J].Atmos Envriron,1998,32(7):1317-1322.
    [19]MIKKELSEN T N,RO-POULSEN H,PILEGAARD K,et al.Ozone Uptake by an Evergreen Forest Canopy:Temporal Variation and Possible Mechanisms[J].Environmental Pollution,2000,109(3):423-429.
    [20]SORIMACHI A,SAKAMOTO K,ISHIHARA H,et al.Measurements of Sulfur Dioxide and Ozone Dry Deposition over Short Vegetation in Northern China-A Preliminary Study[J].Atmospheric Environment,2003,37(22):3157-3166.
    [21]WESELY M L,HICKS B B.A Review of the Current Status of Knowledge on Dry Deposition[J].Atmospheric Environment,2000,34(12):2261-2282.
    [22]潘小乐,王自发,王喜全,等.秋季在北京城郊草地下垫面上的一次臭氧干沉降观测试验[J].大气科学,2010,34(1):120-130.
    [23]BUSINGER J A,WYNGAARD J C,IZUMI Y,et al.Flux-Profile Relationships in the Atmospheric Surface Layer[J].Journal of Atmospheric Sciences,1971,28(28):181-189.
    [24]张丽芹.大理市空气质量现状及对策[J].环境科学导刊,2016,35(5):60-64.
    [25]李硕,吴荣军.冬麦田臭氧干沉降过程的观测[J].应用生态学报,2016,27(6):1811-1819.
    [26]张艳,王体健,胡正义,等.典型大气污染物在不同下垫面上干沉积速率的动态变化及空间分布[J].气候与环境研究,2004,9(4):591-604.
    [27]王欢博,石光明,田密,等.三峡库区大气活性氮组成及干沉降通量[J].中国环境科学,2018(1):44-50.
    [28]苏航,银燕,朱彬,等.中国环渤海地区SO2和NO2干沉降数值模拟及影响因子分析[J].中国环境科学,2012,32(11):1921-1932.
    [29]黄积庆,郑有飞,徐静馨,等.南京秋季裸地臭氧干沉降通量观测及土壤阻力模拟[J].应用生态学报,2016,27(10):3196-3204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700