基于转录组测序技术挖掘大豆蛋白质合成相关基因
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transcriptome Analysis of Protein Synthesis Related Genes in Soybean
  • 作者:郭静文 ; 史晓蕾 ; 刘茜 ; 赵青松 ; 邸锐 ; 刘兵强 ; 闫龙 ; 王凤敏 ; 张孟臣 ; 赵宝华 ; 杨春燕
  • 英文作者:GUO Jingwen;SHI Xiaolei;LIU Qian;ZHAO Qingsong;DI Rui;LIU Bingqiang;YAN Long;WANG Fengmin;ZHANG Mengchen;ZHAO Baohua;YANG Chunyan;Institute of Cereal and Oil Crops,Hebei Academy of Agriculture and Forestry Sciences,Shijiazhuang Branch of National Soybean Improvement Center,Huang-Huai-Hai Key Laboratory of Biology and Genetic Improvement of Soybean,Ministry of Agriculture,Hebei Key Laboratory of Crop Genetics and Breeding;College of Life Sciences,Hebei Normal University;
  • 关键词:大豆 ; 蛋白质含量 ; 转录组测序 ; 差异表达基因 ; 荧光定量PCR
  • 英文关键词:Soybean;;Protein content;;Transcriptome sequencing;;Differentially expressed genes;;Fluorescent quantitative PCR
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:河北省农林科学院粮油作物研究所国家大豆改良中心石家庄分中心农业部黄淮海大豆生物学与遗传育种重点实验室河北省遗传育种重点实验室;河北师范大学生命科学学院;
  • 出版日期:2019-02-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(31201234;31871652);; 河北省青年拔尖人才计划;; 国家产业技术体系(CARS-004-PS06);; 国家重点研发计划(2016YFD0100201);; 河北省重点研发计划(16227516D);; 现代农业科技创新工程项目(F17R37)
  • 语种:中文;
  • 页:HBNB201901012
  • 页数:13
  • CN:01
  • ISSN:13-1101/S
  • 分类号:65-77
摘要
通过转录组测序技术挖掘蛋白质合成相关基因,为解析蛋白质合成机制奠定基础。以遗传背景相近但蛋白含量差异较大的大豆高蛋白品系冀HJ117(蛋白质含量52. 99%)及其回交亲本冀豆12(蛋白质含量46. 48%)为研究材料,利用转录组测序技术和生物信息学分析,以期挖掘大豆籽粒蛋白质合成相关基因。通过对转录组数据中冀HJ117和冀豆12差异表达基因的分析筛选,共得到336个差异表达基因,其中冀HJ117较冀豆12有195个上调表达基因,141个下调表达基因。通过GO功能富集分析,发现在分子功能类型中注释的差异基因主要与催化和连接等功能相关; KEGG显著富集分析发现差异表达基因主要富集在蛋白质内质网合成途径中,该途径共筛选到34个差异表达基因,其中33个基因在冀HJ117中表达量较高。从该途径中筛选出9个候选基因,采用荧光定量PCR方法检测其表达量,表达趋势与RNA-Seq检测结果基本一致,证实了RNA-Seq数据的可靠性。RNA-Seq测序结果获得了与蛋白质合成相关基因的基本信息,蛋白质内质网合成途径可能是冀HJ117与冀豆12蛋白质含量产生差异的重要通路。
        By using transcriptome sequencing technology,the screening of protein synthesis related genes will lay a foundation for further exploring the mechanism of protein synthesis. Ji HJ117( Protein content of 52. 99%)and its backcross parent Jidou 12( Protein content of 46. 48%) with similar genetic backgrounds but different in protein content were used as research materials. Through RNA-sequencing of soybean seeds from Ji HJ117 and Jidou12 to gain insights into the genes potentially related to protein synthesis. A total of 336 differentially expressed genes( DGEs) were screened from Ji HJ117 and Jidou 12,of which 195 were up-regulated and 141 down-regulated in Ji HJ117. Through the Gene Ontology analysis,DGEs annotated in molecular function types were mainly related to catalysis and ligation. Significant enrichment analysis of KEGG revealed that the DGEs were mainly enriched in protein processing in endoplasmic reticulum. A total of 34 DGEs were screened in this pathway,of which 33 genes were highly expressed in Ji HJ117. Nine candidate genes were selected from this pathway and their expression levels were detected by Real-time fluorescence quantitative PCR. The expression trend was basically consistent with that of RNA-Seq,confirming the reliability of RNA-Seq datas. RNA-Seq analysis obtained basic information about protein synthesis related genes in soybean. The pathway of protein processing in endoplasmic reticulum might be an important pathway that contribute to the difference of protein content in Ji HJ117 and Jidou 12. The accomplishment of these results constitute the first step toward understanding the regulation mechanisms of seed protein synthesis and provide valuable resource for further research.
引文
[1]赵团结,盖钧镒.栽培大豆起源与演化研究进展[J].中国农业科学,2004,37(7):954-962. doi:10.3321/j. issn:0578-1752. 2004. 07. 004.Zhao T J,Gai J Y. The origin and evolution of cultivatedsoybean[J]. Scientia Agricultura Sinica,2004,37(7):954-962. doi:10. 3321/j. issn:0578-1752. 2004. 07.004.
    [2]郑宇宏,陈亮,孟凡凡,范旭红,张云峰,孙星邈,王明亮,王曙明.吉林省不同年代大豆育成品种产量与品质性状变化趋势[J].东北农业科学,2016,41(6):45-49. doi:10. 16423/j. cnki. 1003-8701. 2016.06. 010.Zheng Y H,Chen L,Meng F F,Fan X H,Zhang Y F,Sun X M,Wang M L,Wang S M. Changes of yield andquality traits of soybean cultivars released during differentstages in Jilin Province[J]. Journal of Northeast Agricul-tural Sciences,2016,41(6):45-49. doi:10. 16423/j.cnki. 1003-8701. 2016. 06. 010.
    [3]张伟,王曙明,邱强,闫晓艳,彭宝,张晓霞,姜海英.从品种志分析吉林省八十五年来大豆育成品种产量和品质的演变[J].大豆科学,2009,28(6):970-975. doi:10. 11861/j. issn. 1000-9841. 2009. 06. 970.Zhang W,Wang S M,Qiu Q,Yan X Y,Peng B,ZhangX X,Jiang H Y. Changes of yield and quality traits of re-leased soybean cultivars during Past 85 Years in JilinProvince[J]. Soybean Science,2009,28(6):970-975. doi:10. 11861/j. issn. 1000-9841. 2009. 06. 970.
    [4] Hwang E Y,Song Q J,Jia G F,Specht J E,Hyten D L,Costa1 J,Cregan P B. A genome-wide association studyof seed protein and oil content in soybean[J]. BMC Ge-nomics 2014,15:1. doi:10. 1186/1471-2164-15-1.
    [5] Bolon Y T,Joseph B,Cannon S B,Graham M A,DiersB W,Farmer A D,May G D,Muehlbauer G J,Specht JE,Tu Z J,Weeks N,Xu W W,Shoemaker R C,VanceC P. Complementary genetic and genomic approacheshelp characterize the linkage group I seed protein QTL insoybean[J]. BMC Plant Biology,2010,10:41. doi:10. 1186/1471-2229-10-41.
    [6] Kyujung Van,McHale L K. Meta-Analyses of QTLs asso-ciated with protein and oil contents and compositions insoybean9(Glycine max(L.)Merr.)seed[J]. Interna-tional Journal of Molecular Sciences,2017,18(6):1180. doi:10. 3390/ijms18061180.
    [7] Patil G,Mian R,Vuong T,Pantalone V,Song Q,ChenP,Shannon G J,Carter T C,Nguyen H T. Molecularmapping and genomics of soybean seed protein:a reviewand perspective for the future[J]. Theoretical and Ap-plied Genetics,2017,130(10):1975-1991. doi:10.1007/s00122-017-2955-8.
    [8]魏荷,王金社,卢为国.大豆籽粒蛋白质含量分子遗传研究进展[J].中国油料作物学报,2015,37(3):394-410. doi:1007-9084. 2015. 03. 021.Wei H,Wang J S,Lu W G. Molecular genetic advancesin soybean seed protein[J]. Chinese Journal of Oil CropSciences,2015,37(3):394-410. doi:1007-9084.2015. 03. 021.
    [9] Cober E R, Voldeng H D. Developing high-protein,high-yield soybean populations and lines[J]. Crop Sci-ence,2000,40(1):39-42. doi:10. 2135/crops-ci2000. 40139x.
    [10] Schmutz J,Cannon S B,Schlueter J,Ma J,Mitros T,Nelson W,Hyten D L,Song Q,Thelen J J,Cheng J,Xu D,Hellsten U,May G D,Yu Y,Sakurai T,Umez-awa T,Bhattacharyya M K,Sandhu D,Valliyodan B,Lindquist E,Peto M,Grant D,Shu S,Goodstein D,Barry K,Futrell-Griggs M,Abernathy B,Du J,TianZ,Zhu L,Gill N,Joshi T,Libault M,Sethuraman A,Zhang X C,Shinozaki K,Nguyen H T,Wing R A,Cregan P,Specht J,Grimwood J,Rokhsar D,StaceyG,Shoemaker R C,Jackson S A. Genome sequence ofthe palaeopolyploid soybean[J]. Nature,2010,463(7278):178-183. doi:10. 1038/nature08670.
    [11] Phansak P,Soonsuwon W,Hyten D L,Song Q J,Cregan P B,Graef G L,Specht J E. Multi-Populationselective genotyping to identify soybean[Glycine max(L.)Merr.]seed protein and oil QTLs[J]. G3 Genes-genetics,2016,6:1635-1648. doi:10. 1534/g3.116. 027656.
    [12] Nichols D M,Glover K D,Carlson S R,Specht J E,Diers B W. Fine mapping of a seed protein QTL on soy-bean linkage group I and its correlated effects on agro-nomic traits[J]. Crop Science,2006,46(2):834-839. doi:10. 2135/cropsci2005. 05-0168.
    [13] Chen J Q,Lang C X,Hu Z H. Antisense PEP gene toratio of protein and lipid content in Brassica napus seeds[J]. Journal of Agricultural Biotechnology,1999,7(4):316-320. doi:10. 1016/S0140-6736(69)91396-8.
    [14] Wang H W,Zhang B,Hao Y J,Tian A G,Liao Y,Zhang J S,Chen S Y. The soybean Dof-type transcrip-tion factor genes,Gm Dof4 and Gm Dof11,enhance lipidcontent in the seeds of transgenic Arabidopsis plants[J].The Plant Journal,2007,52(4):716-729. doi:10.1111/j. 1365-313X. 2007. 03268. x.
    [15] Verdier J,Thompson R D. Transcriptional regulation ofstorage protein synthesis during dicotyledon seed filling[J]. Plant Cell Physiol,2008,49(9):1263-1271.doi:10. 1093/pcp/pcn116.
    [16] Ezcurra I,Wycliffe P,Nehlin L,Ellerstrom M,RaskL. Transactivation of the Brassica napus napin promoterby ABI3 requires interaction of the conserved B2 and B3domains of ABI3 with different cis-elements:B2 medi-ates activation through an ABRE,whereas B3 interactswith an RY/G-box[J]. Plant Journal,2000,24(1):57-66. doi:10. 1046/j. 1365-313x. 2000. 00857. x.
    [17]王楠.谷子与锈菌互作的转录组和表达谱研究及相关基因表达分析[D].石家庄:河北师范大学,2015.Wang N. The bac library construction and transcriptomeanalysis of wheat material which carry YR26 gene[D].Shijiazhuang:Hebei Normal University,2015.
    [18] Luan H Y,Shen H Q,Zhang Y H,Zang H,Qiao H L,Hong T,Chen J,Chen H. Comparative transcriptome a-nalysis of barley(Hordeum vulgare L.)glossy mutant u-sing RNA-Seq[J]. Brazilian Journal of Botany,2016,27(11):1-10. doi:10. 1007/s40415-016-0328-1.
    [19] Wang L,Liu L,Ma Y,Li S,Dong S,Zu W. Tran-scriptome profilling analysis characterized the gene ex-pression patterns responded to combined drought andheat stresses in soybean[J]. Computation BiologyChemistry,2018,77:413-429. doi:10. 1016/j.compbiolchem. 2018. 09. 012.
    [20] Wang Q Q,Liu F,Chen X S,Ma X J,Zeng H Q,Yang Z M. Transcriptome profiling of early developingcotton fiber by deep-sequencing reveals significantly dif-ferential expression of genes in a fuzzless/lintless mutant[J]. Genomics,2010,96(6):369-376. doi:10.1016/j. ygeno. 2010. 08. 009.
    [21]和小燕,胡晓锋,王允,张幸果,李贺敏,崔党群,殷冬梅.花生籽仁不同发育时期的转录组测序分析[J].分子植物育种,2016,14(11):2930-2943.He X Y,Hu X F,Wang Y,Zhang X G,Li H M,Cui DQ,Yin D M. Sequencing analysis of transcriptome duringthe different developmental stages in peanut seed[J].Molecular Plant Breeding,2016,14(11):2930-2943.
    [22] Julio V,Enrique I,Beatriz J,Martínez O,Vielle-CalzadaJ P,Herrera-Estrella L,Herrera-Estrella A. Deep sam-pling of the palomero maize transcriptome by a highthroughput strategy of pyrosequencing[J]. BMC Genom-ics,2009,10(1):1-10. doi:10. 1186/1471-2164-10-299.
    [23] Alagna F,D'Agostino N,Torchia L,Servili M,Rao R,Pietrella M,Giuliano G,Chiusano M L,Baldoni L,Perrotta G. Comparative 454 pyrosequencing of tran-scriptsfrom two olive genotypes during fruit development[J]. BMC Genomics,2009,10(1):399-414. doi:10. 1186/1471-2164-10-399.
    [24]栾海业,臧慧,沈会权,张英虎,乔海龙,陶红,申玉香.大麦白化颖壳突变体的转录组学分析[J].核农学报,2017,31(12):2332-2339.Luan H Y,Zang H,Shen H Q,Zhang Y H,Qiao H L,Tao H,Shen Y X. Transcriptome analysis of albino lem-ma mutant in barley[J]. Journal of Nuclear AgriculturalSciences,2017,31(12):2332-2339.
    [25]陈静.花生种子休眠解除过程中相关基因转录组学研究[D].南京:南京农业大学,2004.Chen J. Analysis on transcriptome of genes involved inpeanut seed dormancy release[D]. Nanjing:NanjingAgricultural University,2004.
    [26]李海燕,王芳,段玉玺,陈立杰.大豆胞囊线虫侵染诱导五寨黑豆早期的转录组分析[J].中国油料作物学报,2015,37(2):194-200. doi:10. 7505/j. issn.1007-9084. 2015. 02. 011.Li H Y,Wang F,Duan Y X,Chen L J. Transcriptomeanalysis of Wuzhai heidou infected by Heterodera glycine[J]. Chinese Journal of Oil Crop Sciences,2015,37(2):194-200. doi:10. 7505/j. issn. 1007-9084.2015. 02. 011.
    [27]黄启秀,曲延英,姚正培,李梦雨,陈全家.海岛棉枯萎病抗性与类黄酮代谢途径基因表达量的相关性[J].作物学报,2017,43(12):1791-1801. doi:10. 3724/SP. J. 1006. 2017. 01791.Huang Q X,Qu Y Y,Yao Z P,Li M Y,Chen Q J.Correlation between resistance to Fusarium wilt and ex-pression of flavonoid metabolism related genes in Gos-sypium barbadense L.[J]. Acta Agronimica Sinica,2017,43(12):1791-1801. doi:10. 3724/SP. J.1006. 2017. 01791.
    [28] Cohen S P,Liu H,Argueso C T,Pereira A,Vera CruzC,Verdier V,Leach J E. RNA-Seq analysis reveals in-sight into enhanced rice Xa7-mediated bacterial blightresistance at high temperature[J]. PLo S One,2017,12(11):e0187625. doi:10. 1371/journal. pone.0187625.
    [29]李永辉,陈琳琳,孙炳剑,王利民,邢小萍,袁虹霞,丁胜利,李洪连.假禾谷镰孢侵染小麦后3种植物激素相关基因的差异表达分析[J].作物学报,2017,43(11):1632-1642. doi:10. 3724/SP. J. 1006.2017. 01632.Li Y H,Chen L L,Sun B J,Wang L M,Xing X P,Yuan H X,Ding S L,Li H L. Differential expression ofthree plant hormone related genes in wheat in-fected byFusarium pseudograminearum[J]. Acta Agronmica Sini-ca,2017,43(11):1632-1642. doi:10. 3724/SP. J.1006. 2017. 01632.
    [30]曾庆东.小麦抗条锈病基因Yr26载体材料BAC文库构建及转录组测序[D].杨凌:西北农林科技大学,2016.Zeng Q D. The BAC library construction and transcrip-tome analysis of wheat material which carry Yr26 gene[J]. Yangling:North West Agriculture and Forestry U-niversity,2016.
    [31]许家磊.基于甘薯徐781和徐薯18转录组测序的SNP标记开发[D].北京:中国农业科学院,2015.doi:10. 7666/d. Y2787474.Xu J L. SNP marker development based on sequencingof sweet potato Xu 781 and Xushu 18 transcriptome[D]. Beijing:China Academic Journal Electronic Pub-lishing House,2015. doi:10. 7666/d. Y2787474.
    [32]任梦露,刘卫国,刘婷,杜勇利,邓榆川,邹俊林,袁晋,杨文钰.荫蔽胁迫下大豆茎秆形态建成的转录组分析[J].作物学报,2016,42(9):1319-1331. doi:10. 3724/SP. J. 1006. 2016. 01319.Ren M L,Liu W G,Liu T,Du Y L,Deng Y C,Zou JL,Yuan J,Yang W Y. Transcriptome analysis of stemmorphogenesis under shade stress in soybean[J]. ActaAgtonomica Sinica,2016,42(9):1319-1331. doi:10. 3724/SP. J. 1006. 2016. 01319.
    [33]孙爱清,张杰道,万勇善,刘风珍,张昆,孙利.花生干旱胁迫响应基因的数字表达谱分析[J].作物学报,2013,39(6):1045-1053. doi:10. 3724/SP. J.1006. 2013. 01045.Sun A Q,Sun J D,Wan Y S,Liu F Z,Zhang K,SunL. In silico expression profile of genes in response to-drought in peanut[J]. Acta Agronomica Sinica,2016,39(6):1045-1053. doi:10. 3724/SP. J. 1006. 2013.01045.
    [34] Mortazavi A,Williams B A,Mccue K,Schaeffer L,Wold W. Mapping and quantifying mammalian tran-scriptomes by RNA-Seq[J]. Nature Methods,2008,5(7):621-628. doi:10. 1038/nmeth. 1226.
    [35] Audic S,Claverie J M. The significance of digital geneexpression profiles[J]. Genome Research,1997,7(10):986-995. doi:10. 1101/gr. 7. 10. 986.
    [36]陈欢.大豆籽粒不同发育时期基因表达谱的研究[D].长春:吉林农业大学,2012.Chen H. Gene expression profile of developing soybeanseed[D]. Changchun:Jilin Agricultural University,2012.
    [37]杜若琛.大豆籽粒发育过程中ABI3-like与贮藏蛋白基因的关系及调控机制的研究[D].晋中:山西农业大学,2016.Du R C. Study on the relationship between ABI3-likeand storage protein genes during the development of soy-bean seeds and its regulation mechanism[D]. Jinzhong:Shanxi Agricultural University,2016.
    [38] Fuji K,Shimada T,Takahashi H,Tamura K,KoumotoY,Utsumi S,Nishizawa K,Maruyama N,Hara-Nish-imura I. Arabidopsis vacuolar sorting mutants(green flu-orescent seed)can be identified efficiently by secretionof vacuole-targeted green fluorescent protein in theirseeds[J]. Plant Cell,2007,19(2):597-609. doi:10. 1105/tpc. 106. 045997.
    [39]韩宝达,李立新.植物种子贮藏蛋白质及其细胞内转运与加工[J].植物学报,2010,45(4):492-505. doi:10. 3969/j. issn. 1674-3466. 2010. 04. 013.Han B D,Li L X. Seed storage proteins and their intra-cellular transport and processing[J]. Chinese Bulletinof Botany,2010,45(4):492-505. doi:10. 3969/j.issn. 1674-3466. 2010. 04. 013.
    [40]张宁,姜晶.植物中小分子热激蛋白基因家族(s HSPs)研究进展[J].植物生理学报,2017(6):943-948. doi:CNKI:SUN:ZWSL. 0. 2017-06-006.Zhang N,Jiang J. Research advances of small heatshock protein gene family(s HSPs)in plants[J]. PlantPhysiology Journal,2017,53(6):943-948. doi:CNKI:SUN:ZWSL. 0. 2017-06-006.
    [41]王义菊.过量表达小分子热激蛋白对番茄耐热性的影响[D].济南:山东师范大学,2005.Wang Y J. The effects of overexpression of small shockproteins on the thermotolerence in tomato[D]. Jinan:Shandong Normal University,2005.
    [42] Molinari M. N-glycan structure dictates extension of pro-tein folding or onset of disposal[J]. Nature ChemicalBiology,2007,3(6):313-320. doi:10. 1038/nchembio880.
    [43] SoldàT,Galli C,Kaufman R J,Molinari M. Substrate-specific requirements for UGT1-dependent release fromcalnexin[J]. Molecular Cell,2007,27(2):238-249. doi:10. 1016/j. molcel. 2007. 05. 032.
    [44] Hebert D N,Foellmer B,Helenius A. Glucose trim-ming and reglucosylation determine glycoprotein associa-tion with calnexin in the endoplasmic reticulum[J].Cell,1995,81(3):425-433. doi:10. 1016/0092-8674(95)90395-x.
    [45] Hirsch C,Gauss R,Horn S C,Neuber O,Sommer T.The ubiquitylation machinery of the endoplasmic reticu-lum[J]. Nature,2009,458(7237):453-460. doi:10. 1038/nature07962.
    [46] Gurkan C,Stagg S M,Lapointe P,Balch W E. TheCOPII cage:unifying principles of vesicle coat assembly[J]. Nature Reviews Molecular Cell Biology,2006,7(10):727-738. doi:10. 1038/nrm2025.
    [47] Younger J M,Chen L,Ren H Y,Rosser M F,TurnbullE L,Fan C Y,Patterson C,Cyr D M. Sequential quali-ty-control checkpoints triage misfolded cystic fibrosistransmembrane conductance regulator[J]. Cell,2006,126(3):571-582. doi:10. 1016/j. cell. 2006. 06.041.
    [48]吴迪.内质网中FKBP23与Bi P结合后对Bi P的AT-Pase酶活性的影响[D].天津:南开大学,2005.doi:10. 7666/d. y804786.Wu D. Effect of binding of FKBP23 to Bi P on ATPaseactivity of Bi P in endoplasmic reticulum[D]. Tianjin:Nankai University,2005. doi:10. 7666/d. y804786.
    [49] Li P S,Yu T F,He G H,Chen M,Zhou Y B,Chai SH,Xu Z S,Ma Y Z. Genome-wide analysis of the Hsffamily in soybean and functional identification of Gm-Hsf34 involvement in drought and heat stresses[D].BMC Genomics,2014,15(1):1-16. doi:10. 1186/1471-2164-15-1009.
    [50] Chauhan H,Khurana N,Agarwal P,Khurana J P,Khurana P. A seeds preferential heat shock transcriptionfactor from wheat provides abiotic stress tolerance andyield enhancement in transgenic Arabidopsis under heatstress environment[J]. Plo S One,2013,8(11):e79577. doi:10. 1371/journal. pone. 0079577.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700