不同外电压下自养型生物阴极还原硫酸盐的性能及生物膜群落响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Sulfate Reduction and Microbial Community of Autotrophic Biocathode in Response to Externally Applied Voltage
  • 作者:胡佳萍 ; 曾翠平 ; 骆海萍 ; 刘广立 ; 张仁铎 ; 卢耀斌
  • 英文作者:HU Jia-ping;ZENG Cui-ping;LUO Hai-ping;LIU Guang-li;ZHANG Ren-duo;LU Yao-bin;Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology,School of Environmental Science and Engineering,Sun Yat-sen University;
  • 关键词:微生物电解系统(MES) ; 自养生物阴极 ; 硫酸盐还原 ; 外加电压 ; 阴极微生物群落
  • 英文关键词:microbial electrolysis system(MES);;autotrophic biocathode;;sulfate reduction;;applied voltage;;cathodic bacterial community
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:中山大学环境科学与工程学院广东省环境污染控制与修复技术重点实验室;
  • 出版日期:2018-08-22 21:20
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:广州市科技计划项目“珠江新星”人才专项(201710010031);; 广东省自然科学基金项目(2015A030313169,2015A030313102);; 国家自然科学基金项目(51308557,41471181,51278500)
  • 语种:中文;
  • 页:HJKZ201901040
  • 页数:9
  • CN:01
  • ISSN:11-1895/X
  • 分类号:329-337
摘要
微生物电解系统(microbial electrolysis system,MES)生物阴极还原去除环境污染物的过程中,外加电压的大小可显著影响其性能,阴极生物膜作为去除污染物的关键因子,其对外电压改变的响应尚属未知.本研究构建了双室MES,比较外电压为0.4、0.5、0.6、0.7和0.8 V情形下自养型生物阴极的硫酸盐还原特性及生物膜胞外聚合物和群落结构特征.结果表明,MES的输出电流、周期电荷量、COD去除量与外加电压(0.4~0.8 V)呈正相关关系;外加电压为0.4~0.8 V时,硫酸盐还原量随着电压的升高先升高后降低,在0.7 V时获得最大硫酸盐还原速率[78.9 g·(m3·d)-1]和最高S2-出水浓度(31.9 mg·L~(-1)±2.2 mg·L~(-1));MES的电子回收率最高值为41.8%,推测产氢可能是电子损失的一个途径.阴极生物膜的聚多糖和蛋白量随外电压的升高而增加,0.8 V电压下的生物量比0.4 V提高了70%.阴极生物膜群落结构分析发现,Proteobacteria在门水平分布中占主导,Desulfovibrio在属水平分布中占主导,Desulfovibrio的相对丰度并未随着外加电压的升高发生明显的波动,表明Desulfovibrio在利用阴极呼吸代谢方面具有独特的优势.种水平分析发现,Desulfovibrio magneticus RS-1和s_unclassified_g_Desulfovibrio随着外电压的改变呈现相反的变化趋势.
        The removal efficiencies of environmental pollutants in a microbial electrolysis system(MES) with a biocathode are highly affected by the externally applied voltage.Although the cathode biofilm plays a key role in the pollution removal,its response to the applied voltage is still unknown.A two-chambered MES with a biocathode was constructed to study the impact of the different applied voltages(0.4,0.5,0.6,0.7,and 0.8 V) on the sulfate reduction,extracellular polymer formation,and cathodic bacterial community.The results show that the current output and coulomb and COD removals of the MES are positively correlated with the applied voltage ranging from 0.4 to 0.8 V.The sulfate reduction rate first increases and then decreases with increasing voltage in the MES.The maximum sulfate reductive rate [78.9 g·(m3·d)-1]and maximum S2-production(31.9 mg·L~(-1)± 2.2 mg·L~(-1)) were achieved at 0.7 V.The highest electron recovery efficiencies of the MES are 41.8%;hydrogen production may be a pathway leading to electron loss.The polysaccharide and protein contents of the cathode biofilm increase with increasing voltage.The cathode biomass at0.8 V is 70% higher than that at 0.4 V.The high throughput sequencing results show that Proteobacteria and Dsulfovibrio are dominant in the cathodic microbial community at the phylum and genus levels,respectively.The relative abundance of Desulfovibrio shows little variation with the increasing voltage,indicating that Desulfovibrio is of advantage for using the cathode as electron donor for the respiratory metabolism.With the increasing voltage,the distribution of Desulfovibrio at species level indicates that the changes of Desulfovibriox magneticus RS-1 and s_unclassified_g_Desulfovibrio are contrary.
引文
[1]相凤欣,任立人,吴丹,等.生物处理含硫酸盐废水生成单质硫的研究进展[J].环境工程,2012,30(S2):151-155.Xiang F X,Ren L R,Wu D,et al.Advances in bio-treatment of sulfate-laden wastewater and conversion to element sulfur[J].Environmental Engineering,2012,30(S2):151-155.
    [2]Liamleam W,Annachhatre A P.Electron donors for biological sulfate reduction[J].Biotechnology Advances,2007,25(5):452-463.
    [3]Luo H P,Fu S Y,Liu G L,et al.Autotrophic biocathode for high efficient sulfate reduction in microbial electrolysis cells[J].Bioresource Technology,2014,167:462-468.
    [4]Su W T,Zhang L X,Tao Y,et al.Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems[J].Electrochemistry Communications,2012,22:37-40.
    [5]Blázquez E,Gabriel D,Baeza J A,et al.Treatment of highstrength sulfate wastewater using an autotrophic biocathode in view of elemental sulfur recovery[J].Water Research,2016,105:395-405.
    [6]符诗雨,刘广立,骆海萍,等.微生物电解系统生物阴极的硫酸盐还原特性研究[J].环境科学,2014,35(2):626-632.Fu S Y,Liu G L,Luo H P,et al.Characterization of biocatalysed sulfate reduction in a cathode of microbial electrolysis system[J].Environmental Science,2014,35(2):626-632.
    [7]Teng W K,Liu G L,Luo H P,et al.Simultaneous sulfate and zinc removal from acid wastewater using an acidophilic and autotrophic biocathode[J].Journal of Hazardous materials,2016,304:159-165.
    [8]Zhan G Q,Zhang L X,Li D P,et al.Autotrophic nitrogen removal from ammonium at low applied voltage in a singlecompartment microbial electrolysis cell[J].Bioresource Technology,2012,116:271-277.
    [9]周亚,杨春.生物电化学系统对4-氯硝基苯的降解[J].化工进展,2018,37(1):375-380.Zhou Y,Yang C.Degradation of 4-chloronitrobenzene by bioelectrochemical system[J].Chemical Industry and Engineering Progress,2018,37(1):375-380.
    [10]Aulenta F,Reale P,Catervi A,et al.Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system[J].Electrochimica Acta,2008,53(16):5300-5305.
    [11]Coma M,Puig S,Pous N,et al.Biocatalysed sulphate removal in a BES cathode[J].Bioresource Technology,2013,130:218-223.
    [12]Xiang Y B,Liu G L,Zhang R D,et al.High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane[J].Bioresource Technology,2017,233:227-235.
    [13]Ding A Q,Yang Y,Sun G D,et al.Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell(MEC)[J].Chemical Engineering Journal,2016,283:260-265.
    [14]Wang K,Sheng Y X,Cao H B,et al.A novel microbial electrolysis cell(MEC)reactor for biological sulfate-rich wastewater treatment using intermittent supply of electric field[J].Biochemical Engineering Journal,2017,125:10-17.
    [15]Hu J P,Zeng C P,Liu G L,et al.Magnetite nanoparticles accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells[J].Biochemical Engineering Journal,2018,133:96-105.
    [16]Hou Y P,Luo H P,Liu G L,et al.Improved Hydrogen Production in the Microbial Electrolysis Cell by Inhibiting Methanogenesis Using Ultraviolet Irradiation[J].Environmental Science&Technology,2014,48(17):10482-10488.
    [17]La Belle E V,Marshall C W,Gilbert J A,et al.Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome[J].PLo S One,2014,9(10):e109935.
    [18]DuBois M,Gilles K A,Hamilton J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28(3):350-356.
    [19]Zhang X Y,Cheng S A,Wang X,et al.Separator characteristics for increasing performance of microbial fuel cells[J].Environmental Science&Technology,2009,43(21):8456-8461.
    [20]Luo H P,Teng W K,Liu G L,et al.Sulfate reduction and microbial community of autotrophic biocathode in response to acidity[J].Process Biochemistry,2017,54:120-127.
    [21]Logan B E,Hamelers B,Rozendal R,et al.Microbial fuel cells:methodology and technology[J].Environmental Science&Technology,2006,40(17):5181-5192.
    [22]Finkelstein D A,Tender L M,Zeikus J G.Effect of electrode potential on electrode-reducing microbiota[J].Environmental Science&Technology,2006,40(22):6990-6995.
    [23]Liang P,Fan M Z,Cao X X,et al.Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells[J].Journal of Chemical Technology and Biotechnology,2009,84(5):794-799.
    [24]Rozendal R A,Hamelers H V M,Molenkamp R J,et al.Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes[J].Water Research,2007,41(9):1984-1994.
    [25]Gong Y M,Ebrahim A,Feist A M,et al.Sulfide-driven microbial electrosynthesis[J].Environmental Science&Technology,2013,47(1):568-573.
    [26]Sun D,Cheng S A,Zhang F,et al.Current density reversibly alters metabolic spatial structure of exoelectrogenic anode biofilms[J].Journal of Power Sources,2017,356:566-571.
    [27]Bond D R,Holmes D E,Tender L M,et al.Electrode-reducing microorganisms that harvest energy from marine sediments[J].Science,2002,295(5554):483-485.
    [28]Wrighton K C,Virdis B,Clauwaert P,et al.Bacterial community structure corresponds to performance during cathodic nitrate reduction[J].ISME Journal,2010,4(11):1443-1455.
    [29]Xing D F,Cheng S A,Logan B E,et al.Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction[J].Applied Microbiology and Biotechnology,2010,85(5):1575-1587.
    [30]Ishii S,Suzuki S,Norden-Krichmar T M,et al.Microbial population and functional dynamics associated with surface potential and carbon metabolism[J].ISME Journal,2014,8(5):963-978.
    [31]Rosenbaum M,Aulenta F,Villano M,et al.Cathodes as electron donors for microbial metabolism:Which extracellular electron transfer mechanisms are involved?[J].Bioresource Technology,2011,102(1):324-333.
    [32]Sun L W,Toyonaga M,Ohashi A,et al.Lentimicrobium saccharophilum gen.nov.,sp.nov.,a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes,and proposal of Lentimicrobiaceae fam.nov.[J].International Journal of Systematic and Evolutionary Microbiology,2016,66(7):2635-2642.
    [33]La Barge N,Yilmazel Y D,Hong P Y,et al.Effect of preacclimation of granular activated carbon on microbial electrolysis cell startup and performance[J].Bioelectrochemistry,2017,113:20-25.
    [34]Sorokin D Y,Tourova T P,Muyzer G,et al.Thiohalospira halophila gen.nov.,sp.nov.and Thiohalospira alkaliphila sp.nov.,novel obligately chemolithoautotrophic,halophilic,sulfuroxidizing gammaproteobacteria from hypersaline habitats[J].International Journal of Systematic and Evolutionary Microbiology,2008,58(7):1685-1692.
    [35]Zhang G D,Feng S S,Jiao Y,et al.Cathodic reducing bacteria of dual-chambered microbial fuel cell[J].International Journal of Hydrogen Energy,2017,42(45):27607-27617.
    [36]Xiang Y B,Liu G L,Zhang R D,et al.Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system[J].Bioresource Technology,2017,241:821-829.
    [37]Byrne M E,Ball D A,Guerquin-Kern J L,et al.Desulfovibrio magneticus RS-1 contains an iron-and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(27):12263-12268.
    [38]Zhou H H,Liu B F,Wang Q S,et al.Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems[J].Biotechnology for Biofuels,2017,10:238.
    [39]Volbeda A,Charon M H,Piras C,et al.Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas[J].Nature,1995,373(6515):580-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700