电镀场地污染土壤稳定化修复药剂的设计优化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:DESIGN OPTIMIZATION OF STABILIZATION REMIDIATION AGENTS FOR CONTAMINATED SOIL IN ELECTROPLATING SITES
  • 作者:周凤飒 ; 黄雷 ; 梁鹏 ; 李红艳 ; 李诗刚
  • 英文作者:ZHOU Feng-sa;HUANG Lei;LIANG Peng;LI Hong-yan;LI Shi-gang;Shenzhen Techand Ecology & Environment Co.,Ltd;
  • 关键词:土壤修复 ; 稳定化 ; 电镀场地
  • 英文关键词:soil remediation;;stabilization;;electroplating site
  • 中文刊名:HJGC
  • 英文刊名:Environmental Engineering
  • 机构:深圳市铁汉生态环境股份有限公司;
  • 出版日期:2019-05-15
  • 出版单位:环境工程
  • 年:2019
  • 期:v.37;No.251
  • 基金:国家重点研发计划“西北干旱荒漠区煤炭基地生态安全保障技术”项目(2017YFC0504400);; 国家重点基础研究发展计划项目(2017YFC0504406):矿区生态修复与生态安全保障技术集成示范研究
  • 语种:中文;
  • 页:HJGC201905005
  • 页数:6
  • CN:05
  • ISSN:11-2097/X
  • 分类号:26-31
摘要
以Cu和Ni等重金属含量较高的污染土壤为研究对象,选取Na_2S、铁粉、Fe S、高岭土、nano-HAP、油菜秸秆生物炭和石硫合剂对其进行稳定化研究,以重金属浸出浓度下降率和单位成本的重金属浸出浓度下降率综合评价各材料单独添加时的修复效果,并进一步选取铁粉、Fe S和石硫合剂进行混料设计实验和添加量梯度实验,分析修复药剂的最佳配比和用量。研究结果表明:1)单一材料修复实验中,石硫合剂的修复效果最佳,综合修复效果评价值顺序为石硫合剂>油菜秸秆生物炭>铁粉>FeS>高岭土>nano-HAP>Na_2S; 2)混料实验中,使用高岭土和石硫合剂按照质量比为0. 76∶1. 24配制稳定化修复药剂,药剂添加量为土壤质量的2. 0%时,综合修复效果最优,污染土壤中Cu和Ni的浸出浓度分别可由7. 01,2. 06 mg/L降至0. 94,0. 47 mg/L。
        In this study,seven kinds of materials including Na_2S,Fe,Fe S,kaolin,nano-hydroxyapatite,rape stalk biochar and lime-sulphur-synthetic-solution( LSSS) were applied respectively,to study the stabilization of contaminated soil with high content of Cu & Ni and other heavy metals, and the remediation effect of each materials added independently was comprehensively evaluated by the leaching concentration reduction rates of heavy metals and that per unit cost. Fe,Fe S and LSSS were additionally selected for the mixture design experiment and gradient dose experiment to obtain the optimum proportion and dosage of composite agents. The results were as follows: 1) In the single material remediation experiment,LSSS worked best,and the order of comprehensive remediation efficiency evaluation values was LSSS>rape stalk biochar>Fe>FeS>kaolin>nano-hydroxyapatite>Na_2S. 2) In the mixture design experiment,when kaolin and LSSS were prepared into a composite stabilization remediation agent by a mass ratio of 0. 76 ∶ 1. 24,and the addition mass of the composite agent accounted for2. 0% of soil total mass,its comprehensive remediation effect was the best: the leaching concentration of Cu and Ni in contaminated soil can be respectively and significantly reduced from 7. 01,2. 06 mg/L to 0. 94,0. 47 mg/L.
引文
[1]甘文君,何跃,张孝飞,等.电镀厂污染土壤重金属形态及淋洗去除效果[J].生态与农村环境学报,2012,28(1):82-87.
    [2]黄益宗,郝晓伟,雷鸣,等.重金属污染土壤修复技术及其修复实践[J].农业环境科学学报,2013,32(3):409-417.
    [3] Kumpiene J,Lagerkvist A,Maurice C. Stabilization of As,Cr,Cu,Pb and Zn in soil using amendments:a review[J]. Waste Management,2008,28(1):215-225.
    [4] Fang S E,Tsang D C W,Zhou F S,et al. Stabilization of cationic and anionic metal species in contaminated soils using sludgederived biochar[J]. Chemosphere,2016,149(Supplement C):263-271.
    [5]吴烈善,曾东梅,莫小荣,等.不同钝化剂对重金属污染土壤稳定化效应的研究[J].环境科学,2015,36(1):309-313.
    [6]国家环境保护总局. GB 15618—1995土壤环境质量标准[S].北京:中国环境出版社,1995.
    [7]国家环境保护总局. GB 3838—2002地表水环境质量标准[S].北京:中国环境出版社,2002.
    [8]国家环境保护总局. GB 8978—1996污水综合排放标准[S].北京:中国环境出版社,1996.
    [9]国家环境保护总局. GB 15618—2008土壤环境质量标准(征求意见稿)[S].北京:中国环境出版社,2008.
    [10]郑家传,张建荣,刘希雯,等.污染场地六价铬的还原和微生物稳定化研究[J].环境科学,2014,35(10):3882-3887.
    [11]刘善军.多硫化钙S药剂对土壤重金属污染修复效果的研究[J].科技展望,2016,26(16):58.
    [12] Chrysochoou M,Ferreira D R,Johnston C P. Calcium polysulfide treatment of Cr(Ⅵ)-contaminated soil[J]. Journal of Hazardous Materials,2010,179(1):650-657.
    [13]许石豪,张帅,胡林潮.电镀场地重金属污染土壤稳定化修复工程应用研究[J].广东化工,2017,44(1):95-97.
    [14] Singh R,Misra V,Singh R P. Removal of Cr(Ⅵ)by nanoscale zero-valent iron(n ZVI)from soil contaminated with tannery wastes[J]. Bulletin of Environmental Contamination and Toxicology,2012,88(2):210-214.
    [15] Su H,Fang Z,Tsang P E,et al. Stabilisation of nanoscale zerovalent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution,2016,214(Supplement C):94-100.
    [16] Leupin O X,Hug S J. Oxidation and removal of arsenic(Ⅲ)from aerated groundwater by filtration through sand and zero-valent iron[J]. Water Research,2005,39(9):1729-1740.
    [17] Manning B A, Kiser J R, Kwon H, et al. Spectroscopic investigation of Cr(Ⅲ)-and Cr(Ⅵ)-treated nanoscale zerovalent iron[J]. Environmental Science&Technology,2007,41(2):586-592.
    [18] Xu R,Zhao A,Masud M M. Effect of Biochars on Adsorption of Cu(Ⅱ),Pb(Ⅱ)and Cd(Ⅱ)by an Oxisol from Hainan,China[M]//Xu J,Wu J,He Y. Functions of National Organic Matter in Springer,Changing Environment,2013:983-987.
    [19]王浩.砂质高岭土的工艺矿物学及选矿试验研究[D].武汉:武汉理工大学,2013.
    [20]王林,徐应明,孙扬,等.天然黏土矿物原位钝化修复镉污染土壤的研究[J].安全与环境学报,2010,10(3):35-38.
    [21] Corami A,Mignardi S,Ferrini V. Copper and zinc decontamination from single-and binary-metal solutions using hydroxyapatite[J].Journal of Hazardous Materials,2007,146(1/2):164.
    [22] Zupancic M,Bukovec P,Milacic R,et al. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils[J]. Waste Management,2006,26(12):1392-1399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700