聚变堆安全特性评价研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Assessment on Safety Characteristics of Fusion Nuclear Reactor
  • 作者:吴宜灿 ; 郁杰 ; 胡丽琴 ; 陈志斌 ; 王石生 ; 杨琪 ; 党同强 ; 朱志强 ; 梁参军 ; 聂保杰 ; 王大桂 ; 李亚洲 ; 王海霞 ; 金鸣 ; 倪木一 ; 贾江涛 ; 汪进 ; 王芳 ; 刘超 ; 蒋洁琼 ; 宋婧 ; 龙鹏程 ; 赵柱民 ; 汪建业 ; FDS团队
  • 英文作者:WU Yi-can;YU Jie;HU Li-qin;CHEN Zhi-bin;WANG Shi-sheng;YANG Qi;DANG Tong-qiang;ZHU Zhi-qiang;LIANG Can-jun;NIE Bao-jie;WANG Da-gui;LI Ya-zhou;WANG Hai-xia;JIN Ming;NI Mu-yi;JIA Jiang-tao;WANG Jin;WANG Fang;LIU Chao;JIANG Jie-qiong;SONG Jing;LONG Peng-cheng;ZHAO Zhu-min;WANG Jian-ye;FDS Team;Key Laboratory of Neutronics and Radiation Safety,Institute of Nuclear Energy Safety Technology,Chinese Academy of Sciences;
  • 关键词:聚变核安全 ; 安全特性 ; 安全体系
  • 英文关键词:Fusion safety;;Safety characteristics;;Safety assessment methodology
  • 中文刊名:HKXY
  • 英文刊名:Nuclear Science and Engineering
  • 机构:中国科学院核能安全技术研究所中国科学院中子输运理论与辐射安全重点实验室;
  • 出版日期:2016-12-15
  • 出版单位:核科学与工程
  • 年:2016
  • 期:v.36;No.142
  • 基金:国家磁约束核聚变能发展研究专项(2014GB112000、2014GB112001、2014GB116000)
  • 语种:中文;
  • 页:HKXY201606013
  • 页数:9
  • CN:06
  • ISSN:11-1861/TL
  • 分类号:76-84
摘要
确保核安全是未来聚变堆设计、建造和运行过程中必须坚持的最高原则,是聚变堆获得建造和运行许可的前提条件,也是聚变能得以吸引公众的主要理由之一。聚变堆具有高能中子、大量放射性氚、复杂结构、极端服役环境等特点,具有独特的潜在安全问题,因而必须开展针对性研究。本文将从聚变中子与放射性源项、热流体与能量传输、氚安全与环境影响、可靠性与风险管理、安全理念与公众接受度五个方面分别总结其安全特性,系统梳理其关键技术挑战,为建立聚变安全评价体系提供技术支持,进而服务于未来聚变堆的设计与建造。
        Safety technology is well recognized as one of the key technologies for the realization of fusion energy,and ensuring safety is always the fundamental principle in the fusion reactor design,construction and operation,as well as the key factor influencing the public opinion on the fusion energy.Furthermore,the fusion reactor has its specific safety concerns considering technical characteristics of high energy neutron,large amount of radioactive tritium inventory,complex reactor components,extremely harsh environment,etc.Therefore,it is essential to conduct the specific research on fusion safety.The aim of this paper is to investigate fusion safety characteristics regarding neutron and radioactive source terms,thermo-fluid and energy transport,tritium safety and environmental impact,reliability growth and risk management,safety regulatory and public acceptance of fusion power,and meanwhile present the key challenges in these research areas.This contribution will lay the technical foundation to the development of fusion-specific safety assessment methodology,and then the design and construction of future fusion reactor.
引文
[1]G.H.Neilson,M.Abdou,G.Federici,et al.International Perspectives on a Path to MFE DEMO.24th IAEA Fusion Energy Conference,2012.
    [2]Neill Taylor,Pierre Cortes.Lessons learnt from ITER safety&licensing for DEMO and future nuclear fusion facilities.Fusion Engineering and Design,2014,89(9-10):1995-2000.
    [3]J.-Ph.Girard,P.Garin,N.Taylor,et al.ITER,Safety and Licensing[J].Fusion Engineering and Design,2007,82(5-14):506-510.
    [4]潘垣,庄革.张明等.国际热核实验反应堆计划及其对中国核能发展战略的影响[J].物理.2010,39(6):379-384.
    [5]潘传红.国际热核实验反应堆计划与未来核聚变能源.物理.2010,39(6):375-378.
    [6]Y.Wu,FDS Team.Conceptual Design Activities of FDS Series Fusion Power Plants in China.Fusion Engineering and Design,2006,81(23-24):2713-2718.
    [7]Y.Wu,J.Jiang,M.Wang,M.Jin,FDS Team.A Fusion-Driven Sub-critical System Concept Based on Viable Technologies.Nuclear Fusion,2011,51(10):103036.
    [8]Y.Wu,FDS Team.Conceptual Design of the China Fusion Power Plant FDS-Ⅱ.Fusion Engineering and Design,2008,83(10-12):1683-1689.
    [9]M.Loughlin,M.Angelone,P.Batistoni,et al.Status and verification strategy for ITER neutronics[J].Fusion Engineering and Design,2014,89(9-10):1865-1869.
    [10]Y.Wu,X.Zhu,S.Zheng,et al.Neutronics Analysis of Dual-Cooled Waste Transmutation Blanket for the FDS.Fusion Engineering and Design,2002,63-64:133-138.
    [11]L.El-Guebaly,V.Massaut,K.Tobita,et al.Goals,challenges,and successes of managing fusion activated materials[J].Fusion Engineering and Design,2008,83(7-9):928-935.
    [12]J.P.Sharpe,D.A.Petti,H.W.Bartels.A review of dust in fusion devices:Implications for safety and operational performance[J].Fusion Engineering and Design,2002,63-64:153-163.
    [13]Y.Wu,J.Song,H.Zheng,et al.CAD-Based Monte Carlo Program for Integrated Simulation of Nuclear System SuperMC[J].Annals of Nuclear Energy,2015,82:161-168.
    [14]Y.Wu,FDS Team.CAD-Based Interface Programs for Fusion Neutron Transport Simulation[J].Fusion Engineering and Design,2009,84(7-11):1987-1992.
    [15]Y.Wu,Z.Xie,U.Fischer.A Discrete Ordinates Nodal Method for One-Dimensional Neutron Transport Calculation in Curvilinear Geometries[J].Nuclear Science and Engineering,1999,133(3):350-357.
    [16]吴宜灿,李静惊,李莹,等.大型集成多功能中子学计算与分析系统'VisualBUS的研究与发展[J].核科学与工程,2007,27(4):365-373.
    [17]吴宜灿,俞盛朋,程梦云,等.多物理耦合分析自动建模软件SuperMC/MCAM 5.2的设计与实现[J].原子能科学技术,2015,49:23-28.
    [18]吴宜灿,何桃,胡丽琴,等.核与辐射安全仿真系统SuperMC/RVIS 2.3研发与应用[J].原子能科学技术,2015,29:77-85.
    [19]Y.Wu,FDS Team.Conceptual Design and Testing Strategy of a Dual Functional Lithium-Lead Test Blanket Module in ITER and EAST[J].Nuclear Fusion,2007,47(11):1533-1539.
    [20]L.D.Pace,L.E.Guebaly,B.Kolbasov.Radioactive Waste[M].Croatia:InTech Europe,2012:303-328.
    [21]M.Zucchetti,L.D.Pace,L.E.Guebaly.The Back End of the Fusion Materials Cycle[J].Fusion Science and Technology,2009,55 109-139.
    [22]M.Zucchetti,L.D.Pace,L.E.Guebaly,et al.An Integrated Approach To The Back-End Of The Fusion Materials Cycle[J].Fusion Engineering and Design,2008,83:1706-1709.
    [23]Y.Wu.Design Status and Development Strategy of China Liquid Lithium-Lead Blankets and Related Material Technology[J].Journal of Nuclear Materials,2007,367-370:1410-1415.
    [24]Y.Wu,FDS Team.Design Analysis of the China Dual-Functional Lithium Lead(DFLL)Test Blanket Module in ITER[J].Fusion Engineering and Design,2007,82:1893-1903.
    [25]吴宜灿,黄群英,朱志强,等,中国系列液态锂铅实验回路设计与研发进展[J].核科学与工程,2009,29(2):161-169.
    [26]C.P.C.Wong,J.F.Salavy,Y,Kim,et al.Overview of liquid metal TBM concepts and programs[J].Fusion Engineering and Design,2008,83:850-857.
    [27]K.M.Feng,C.H.Pan,G.S.Zhang.Overview of design and R&D of solid breeder TBM in China[J],Fusion Engineering and Design,2008,83:1149-1156.
    [28]N.B.Morley,S.Malang,I.Kirillov.Thermofluid magnetohydrodynamic issues for liquid breeders[J].Fusion Science and Technology,2005,47:488-501.
    [29]C.Mistrangelo,L.Buhler.Liquid metal magnetohydrodynamic flows in manifolds of dual coolant lead lithium blankets[J].Fusion Engineering and Design,2014,89:1319-1323.
    [30]W.Krauss,J.Konys,A.Li-Puma.TBM testing in ITER:Requirements for the development of predictive tools to describe corrosion-related phenomena in HCLL blankets toward DEMO[J].Fusion Engineering and Design,2012,87:403-406.
    [31]J.Ph.Girard,W.Gulden,R Kolbasov,et al.Summary of the 8~(th)IAEA Technical Meeting on Fusion Power Plant Safety[J].Nuclear Fusion,2008,48:1-7.
    [32]T.Ihli,T.K.Basu,L.M.Giancarli,et al.Review of blanket designs for advanced fusion reactors[J].Fusion Engineering and Design,2008,83:912-919.
    [33]M.Sawan,M.Abdou.Physics and technology conditions for attaining tritium self-sufficiency for the DT fuel cycle[J].Fusion Engineering and Design,2006,81:1131-1144.
    [34]M.Ota,H.Nagai,J.Koarashi.Importance of root HTO uptake in controlling land-surface tritium dynamics after an acute HT deposition:a numerical experiment[J].Journal of Environmental Radioactivity,2012,109:94-102.
    [35]M.Little,B.Lambert.Systematic review of experimental studies on the relative biological effectiveness of tritium[J],Radiation and Environ-mental Biophysics,2008,47:71-93.
    [36]N.Taylor,J.Elbez-Uzan.Preliminary Safety Report(RPrS)[R].Cadarache:ITER Organization,2011.
    [37]IAEA.Modeling the environmental transfer of tritium and carbon-14 to biota and man[R].Vienna:IAEA,2010.
    [38]D.Galeriu,P.Davis,W.Raskob,et al.Recent processes in tritium radioecology and dosimetry[J].Fusion Science and Technology,2008,54:237-242.
    [39]NRC.Regulatory Structure for New Plant Licensing,Part 1:Technology Neutral Framework[R].Rockville:NRC,2004.
    [40]ASME.Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications[R].New York:ASME,2009.
    [41]IAEA.Procedures for Conducting Probabilistic Safety Assessment for Non-Reactor Nuclear Facilities[R].Vienna:IAEA,2002.
    [42]卢文跃,李晓明,韩庆浩等.核电站设备可靠性管理体系的探索和运作[J].核动力工程.2005,26(2):65-72.
    [43]D.van Houtte,K.Okayama,F.Sagot.ITER operational availability and fluence objectives.Fusion Engineering and Design,2011,86:680-683.
    [44]L.C.Cadwallader,D.P.Sanchez.Secondary Containment System component failure data analysis from 1984 to 1991[R].Idaha:Idaho National Engineering Laboratory,1992.
    [45]G.Cambi,T.Pinna,M.Angelone.Data collection on component malfunctions and failures of JET ICRH system.Fusion Engineering and Design,2008,83:1874-1877.
    [46]T.Pinna,G.Cambi,S.Kinpe,et al.JET operating experience:Global analysis of tritium plant failure.Fusion Engineering and Design,2010,85:1396-1400.
    [47]吴宜灿,革新型核能系统安全研究的回顾与探讨[J].中国科学院院刊.2016(5):567-573.
    [48]Y.Wu.Overview of Fusion Safety and Licensing of DEMO and its Implications on Design and Operation[C].12 th International Symposium on Fusion Nuclear Technology,Jeju Island,2015.
    [49]R.Nakai.Status of GIF Task Force on SFR Safety Design Criteria[C].6~(th)GIF/INPRO Interface Meeting,Vienna,2012.
    [50]GIF.An Integrated Safety Assessment Methodology(ISAM)for GenerationⅣNuclear Systems.GenerationⅣInternational Forum,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700