围岩时变承载能力定量评估的LDP-GRC耦合新方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A new approach of coupling between LDP and GRC for quantitative evaluation of time-dependent self-carrying capacity of surrounding rock
  • 作者:俞缙 ; 马奇飞 ; 涂兵雄 ; 刘士雨 ; 周建烽 ; 蔡燕燕
  • 英文作者:YU Jin;MA Qifei;TU Bingxiong;LIU Shiyu;ZHOU Jianfeng;CAI Yanyan;Fujian Research Center for Tunneling and Urban Underground Space Engineering,Huaqiao University;State Key Laboratory for Geomechanics & Deep Underground Engineering,China University of Mining and Technology;
  • 关键词:围岩自承载能力 ; 时变效应 ; LDP曲线 ; GRC曲线
  • 英文关键词:self-bearing capacity of surrounding rock;;time-dependent effect;;LDP curve;;GRC curve
  • 中文刊名:BFJT
  • 英文刊名:Journal of Beijing Jiaotong University
  • 机构:华侨大学福建省隧道与城市地下空间工程技术研究中心;中国矿业大学深部岩土力学与地下工程国家重点实验室;
  • 出版日期:2018-08-15
  • 出版单位:北京交通大学学报
  • 年:2018
  • 期:v.42;No.200
  • 基金:国家自然科学基金(51679093,51774147);; 中国矿业大学深部岩土力学与地下工程国家重点实验室开放基金项目(SKLGDUEK1701)~~
  • 语种:中文;
  • 页:BFJT201804002
  • 页数:11
  • CN:04
  • ISSN:11-5258/U
  • 分类号:13-22+30
摘要
为定量判断二次支护时机,在围岩自承载系数基础上考虑岩石的流变力学性质,采用Boltzmann流变模型推导了围岩时变承载系数,研究了时间轴上围岩自承能力的变化过程和发挥程度.并以围岩时变承载系数为基础建立考虑时变效应的LDP和GRC曲线耦合新方法,定量得出二次支护时机及围岩时变承载系数间的相关关系.研究结果表明:1)不同隧洞断面处的围岩自承能力随时间变化趋势相似,都是开挖初期围岩自承能力迅速变弱,随后慢慢趋于稳定;经过相同的蠕变时间,距离开挖面越远,围岩自承能力越弱.2)同一隧洞断面处,时间越早围岩时变承载系数越大,围岩自承能力尚未充分发挥,不宜进行二次支护,即二次支护时机应该避开初期围岩自承能力变化剧烈时段.
        In order to assess the secondary support time quantitatively,the time-varying selfbearing coefficient of surrounding rock is proposed based upon the Boltzmann rheological model,which aims to investigate the time-dependent process in which the surrounding rock ' s selfbearing capacity changes and develops.It takes into consideration the rheological mechanics characteristic of rock based on the self-bearing coefficient of surrounding rock. Then, a new coupling approach between LDP and GRC considering time-dependent effect is established based upon timevarying self-bearing coefficient of surrounding rock, and the secondary support time versus the time-varying self-bearing coefficient of surrounding rock is accurately evaluated.The results show that:1)The change of self-bearing capability of surrounding rock over time is similar at different cross sections of tunnel, namely,self-bearing capacity of surrounding rock drastically reduces in the early excavation stage and then tends to be steadied.And the farther away from the excavation surface,the weaker the self-bearing capacity of surrounding rock is; 2) The coupling analysis reveals that the sooner the secondary support is set up, the greater time-varying self-bearing coefficient is.It is not reasonable to carry out the secondary supporting structure when the time-varying self-bearing coefficient drops dramatically over time, because the self-bearing capability of surrounding rock cannot perform well then.
引文
[1]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):1-20.TAN Tjongkie.The mechanical problems for the longterm stability of underground galleries[J].Chinese Journal of Rock Mechanics and Engineering,1982,1(1):1-20.(in Chinese)
    [2]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.QIAN Minggao,SHI Pingwu.Ground pressure and strata control[M].Xuzhou:China University of Mining and Technology Press,2003.(in Chinese)
    [3]张常光,赵均海,朱倩,等.理想弹-塑性岩体的自承载系数[J].岩土工程学报,2015,37(2):250-256.ZHANG Changguang,ZHAO Junhai,ZHU Qian,et al.Self-bearing capacity coefficient of ideal elasticplastic rock mass[J].Chinese Journal of Geotechnical Engineering,2015,37(2):250-256.(in Chinese)
    [4]PANET M.Understanding deformations in tunnels[J].Comprehensive Rock Engineering,1993,1:663-690.
    [5]UNLU T,GERCEK H.Effect of Possion's ratio on the normalized radial displacements occurring around the face of a circular tunnel[J].Tunneling and Underground Space Technology,2003,18(5):547-553.
    [6]BASARIR H,GENIS M,OZARSLAN A.The analysis of radial displacements occurring near the face of a circular opening in weak rock mass[J].International Journal of Rock Mechanics and Mining Sciences,2010,47:771-783.
    [7]VLACHOPOULOS N,DIEDERICHS M S.Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels[J].Rock Mechanics and Rock Engineering,2009,42:131-146.
    [8]CHERN J C,SHIAO F Y,YU C W.An empirical safetycriterion for tunnel construction[C]//Proceedings of the Regional Symposium on Sedimentary Rock Engineering.Taipei,1998:222-227.
    [9]CARRANZA-TORRES C,FAIRHURST C.Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research,2000,15(2):187-213.
    [10]BROWN E T,BRAY J W,LADANYI B,et al.Ground response curves for rock tunnels[J].Journal of Geotechnical Engineering,1984,110(1):140-141.
    [11]CARRANZA-TORRES C,FAIRHURST C,The elastoplastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(6):777-809.
    [12]PARK K H,KIM Y J.Analytical solution for a circular opening in an elastic-brittle-plastic rock[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(4):616-622.
    [13]CHEN R,TONON F.Closed-form solutions for a circular tunnel in elastic-brittle-plastic ground with the original and generalized Hoek-Brown failure criteria[J].Rock Mechanics&Rock Engineering,2011,44(2):169-178.
    [14]ZHANG C,ZHAO J,ZHANG Q,et al.A new closedform solution for circular openings modeled by the unified strength theory and radius-dependent Young's modulus[J].Computers&Geotechnics,2012,42:118-128.
    [15]LEE Y K,PIETRUSZCZAK S.A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J].Tunneling and Underground Space Technology,2008,23(5):588-599.
    [16]HAN J X,LI S C,LI S C,et al.A procedure of strainsoftening model for elasto-plastic analysis of a circular opening considering elasto-plastic coupling[J].Tunnelling&Underground Space Technology Incorporating Trenchless Technology Research,2013,37(6):128-134.
    [17]崔岚,郑俊杰,章荣军,等.弹塑性软化模型下隧洞围变岩变形与支护压力分析[J].岩土力学,2014,35(3):717-722.CUI Lan,ZHENG Junjie,ZHANG Rongjun,et al.Study of support pressure and surrounding rock deformation of a circular tunel with an elastoplastic softening mode[J].Rock and Soil Mechanics,2014,35(J):717-722.(in Chinese)
    [18]张常光,赵均海,张庆贺.基于统一强度理论的深埋圆形岩石隧道收敛限制分析[J].岩土工程学报,2012,34(1):110-114.ZHANG Changguang,ZHAO Junhai,ZHANG Qinghe.Convergence-confinement analysis of deep circular rock tunnels based on unified strength theory[J].Chinese Journal of Geotechnical Engineering,2012,34(1):110-114.(in Chinese)
    [19]孙钧.岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.SUN Jun.Rock rheological mechanics and its advance in engineering applications[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(6):1081-1106.(in Chinese)
    [20]王思敬.论岩石的地质本质性及其岩石力学演绎[J].岩石力学与工程学报,2009,28(3):433-450.WANG Sijing.Geological nature of rock and its deduction for rock mechanics[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(3):433-450.(in Chinese)
    [21]王斌,李夕兵,马海鹏,等.基于自稳时变结构的岩爆动力源分析[J].岩土工程学报,2010,32(1):12-17.WANG Bin,LI Xibing,MA Haipeng,et al.Energy source of rockburst based on self-sustaining time-varying structures[J].Chinese Journal of Geotechnical Engineering,2010,32(1):12-17.(in Chinese)
    [22]王斌,李夕兵,马海鹏,等.岩爆灾害控制的动静组合支护原理及初步应用[J].岩石力学与工程学报,2014,33(6):1169-1178.WANG Bin,LI Xibing,MA Haipeng,et al.Principle and preliminary application of combined staticdynamic support to rockburst disaster controlling[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(6):1169-1178.(in Chinese)
    [23]张建智,俞缙,蔡燕燕,等.渗水膨胀岩隧洞黏弹塑性蠕变解及变形特性分析[J].岩土工程学报,2014(12):2195-2202.ZHANG Jianzhi,YU Jin,CAI Yanyan,et al.Viscoelastic-plastic creep solutions and deformation properties of tunnels in swelling socks under seepage[J].Chinese Journal of Geotechnical Engineering,2014(12):2195-2202.(in Chinese)
    [24]XU S Q,YU M H.The Effect of the intermediate principal stress on the ground response of circular openings in rock mass[J].Rock Mechanics&Rock Engineering,2006,39(2):169-181.
    [25]WANG H N,UTILI S,JIANG M J.An analytical approach for the sequential excavation of axisymmetric lined tunnels in viscoelastic rock[J].International Journal of Rock Mechanics&Mining Sciences,2014,68:85-106.
    [26]WANG H N,LI Y,NI Q,et al.Analytical solutions for the construction of deeply buried circular tunnels with two liners in rheological rock[J].Rock Mechanics&Rock Engineering,2013,46(6):1481-1498.
    [27]BONINI M,DEBERNARDI D,BARLA M,et al.Themechanical behaviour of clay shales and implications on the design of tunnels[J].Rock Mechanics&Rock Engineering,2009,42(2):361.
    [28]ZHANG J Z,ZHOU X P.Time-dependent jamming mechanism for single-shield TBM tunneling in squeezing rock[J].Tunnelling and Underground Space Technology,2017,69:209-222.
    [29]YANG W,ZHANG Q,LI S,et al.Time-dependent behavior of diabase and a nonlinear creep model[J].Rock Mechanics&Rock Engineering,2014,47(4):1211-1224.
    [30]俞凯木,俞缙,周雨晴.考虑孔隙水压劣化作用的围岩黏弹性变形解[J].铁道科学与工程学报,2016,13(6):1046-1052.YU Kaimu,YU Jin,ZHOU Yuqing.Viscoelastic deformaton solution of surrounding rock within deteriorated effect of pore water pressure[J].Jourmal of Railway Science and Engineering,2016,13(6):1046-1052.(in Chinese)
    [31]SINGH A,RAO K S,AYOTHIRAMAN R.Effect of intermediate principal stress on cylindrical tunnel in an elasto-plastic rock mass[J].Procedia Engineering,2017,173:1056-1063.
    [32]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.SHEN Mingrong,CHEN Jianfeng.Rockmass mechanics[M].Shanghai:Tongji University Press,2006.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700