适用于吸气式高速飞行器的蚌式进气道堵盖气动设计及数值模拟研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and numerical simulation of a clamshell-shaped inlet cover for air-breathing hypersonic vehicles
  • 作者:Xun ; WEN ; Jun ; LIU ; Jie ; LI ; Feng ; DING ; Zhi-xun ; XIA
  • 英文作者:Xun WEN;Jun LIU;Jie LI;Feng DING;Zhi-xun XIA;College of Aerospace Science and Engineering, National University of Defense Technology;
  • 关键词:气动外形设计 ; 新型进气道堵盖 ; 气动力分析 ; 气动热评估
  • 英文关键词:Aerodynamic configuration design;;Novel inlet cover;;Aerodynamic force;;Heat evaluation
  • 中文刊名:ZDYG
  • 英文刊名:浙江大学学报A辑(应用物理与工程)(英文版)
  • 机构:College of Aerospace Science and Engineering, National University of Defense Technology;
  • 出版日期:2019-05-03
  • 出版单位:Journal of Zhejiang University-Science A(Applied Physics & Engineering)
  • 年:2019
  • 期:v.20
  • 基金:Project supported by the National Natural Science Foundation of China(Nos.11702322 and 11572348);; the Joint Funds of the National Natural Science Foundation of China(No.U1730247)
  • 语种:英文;
  • 页:ZDYG201905003
  • 页数:11
  • CN:05
  • ISSN:33-1236/O4
  • 分类号:40-50
摘要
目的:吸气式高速飞行器在助推阶段需要对进气道采取保护措施,而应用传统的圆锥体载荷式整流罩存在体积大、质量重等缺陷。为避免载荷罩的空间雍余,基于激波干扰理论,本文旨在提出一种通用型可实现气动自分离的整流罩设计方法,并探讨设计的两组构型在两个弹道特殊状态点的气动力和气动热特性,以及研究构型的适用性和基本气动性能。创新点:1.通过激波干扰理论模型方程,推导出环境变量与构型基本尺寸之间的关系;2.建立气动设计模型,成功求得助推阶段和整流罩分离状态点的气动特性;3.新构型减轻了整流罩系统重量,实现了自分离,简化了机械结构系统。方法:1.通过理论推导,得到飞行器头锥长度和进气口尺寸变化对整流罩构型设计的影响;2.通过数值计算,得到异形整流罩及头锥附近流场分布受设计型面的影响以及产生的适应性气动力。结论:1.整流罩在分离状态可产生负升力,有自动打开的趋势;2.减小整流罩的设计长度有利于气动减阻和降低峰值热流;3.整流罩前缘的极限热流约为13 MW/m~2,在所选复合材料的受热范围内。
        An efficient clamshell-shaped inlet cover configuration based on a shockwave interference methodology is proposed,which has the advantage of an autonomous opening using the aerodynamic force and moment. A preliminary design method for the inlet cover is introduced and used to produce cover models of two different lengths, with contributions similar to those of cowlings, rocket fairings, shrouds, or false ogives. The clamshell-shaped inlet cover features a practical design with a wide range of applications, including utilization in air-breathing hypersonic vehicles under specific constraints. In this investigation, aerodynamic numerical simulations were conducted to evaluate the extent to which the objectives and design principles are achieved for two typical ballistic separation states. The results show that both configurations can prevent an excessive accumulation of shockwaves in the nose cone area. In addition, the inlet cover generates negative lift, which results in the generation of an opening moment. The calculated heat flux at the leading edge of the clamshell-shaped inlet cover is approximately 13 MW/m~2, which is within the limit of the composite material but slightly higher than that of the stagnation point of the nose cone.
引文
Blades EL,Newman III JC,2013.Computational-fluiddynamics-based design optimization of a large asymmetric payload fairing.Journal of Spacecraft and Rockets,50(5):1013-1023.https://doi.org/10.2514/1.A32301
    Brauckmann GJ,Streett C,Kleb WL,et al.,2015.Computational and experimental unsteady pressures for alternate SLS booster nose shapes.Proceedings of the 53rd AIAAAerospace Sciences Meeting.https://doi.org/10.2514/6.2015-0559
    Colonno MR,Alonso JJ,2008.The optimum launch vehicle fairing:an MDO approach.Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference.https://doi.org/10.2514/6.2008-5883
    Ding F,Shen CB,Liu J,et al.,2015.Influence of surface pressure distribution of basic flow field on shape and performance of waverider.Acta Astronautica,108:62-78.https://doi.org/10.1016/j.actaastro.2014.11.038
    Groves CE,Ilie M,Schallhorn PA,2014.Computational fluid dynamics uncertainty analysis for payload fairing spacecraft environmental control systems.Proceedings of the52nd Aerospace Sciences Meeting.https://doi.org/10.2514/6.2014-0440
    Higgins JE,Biskner A,Sanford G,2008.Design,fabrication,and testing of the minotaur IV large fairing.Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-deterministic Approaches Conference,9th AIAA Gossamer Spacecraft Forum,4th AIAA Multidisciplinary Design Optimization Specialists Conference.https://doi.org/10.2514/6.2008-1831
    Hong CQ,Han JC,Zhang XH,et al.,2013.Novel nanoporous silica aerogel impregnated highly porous ceramics with low thermal conductivity and enhanced mechanical properties.Scripta Materialia,68(8):599-602.https://doi.org/10.1016/j.scriptamat.2012.12.015
    Kosareo DN,Oliver ST,Bednarcyk BA,et al.,2014.Buckling design and analysis of a payload fairing 1/6th cylindrical arc-segment panel.Proceedings of the 55th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference.https://doi.org/10.2514/6.2014-1053
    Li SB,Wang ZG,Huang W,et al.,2016.Effect of the injector configuration for opposing jet on the drag and heat reduction.Aerospace Science and Technology,51:78-86.https://doi.org/10.1016/j.ast.2016.01.014
    Liao L,Yan L,Huang W,et al.,2018.Mode transition process in a typical strut-based scramjet combustor based on a parametric study.Journal of Zhejiang UniversitySCIENCE A(Applied Physics&Engineering),19(6):431-451.https://doi.org/10.1631/jzus.A1700617
    Liu Z,Liu J,Ding F,et al.,2017.Effect of thermochemical non-equilibrium on the aerodynamics of an osculatingcone waverider under different angles of attack.Acta Astronautica,139:288-295.https://doi.org/10.1016/j.actaastro.2017.07.013
    Lockwood MK,Petley DH,Martin JG,et al.,1999.Airbreathing hypersonic vehicle design and analysis methods and interactions.Progress in Aerospace Sciences,35(1):1-32.https://doi.org/10.1016/S0376-0421(98)00008-6
    Lv Z,Xia ZX,Liu B,et al.,2017.Preliminary experimental study on solid-fuel rocket scramjet combustor.Journal of Zhejiang University-SCIENCE A(Applied Physics&Engineering),18(2):106-112.https://doi.org/10.1631/jzus.A1600489
    Mc Clinton CR,Rausch VL,Shaw RJ,et al.,2005.Hyper-X:foundation for future hypersonic launch vehicles.Acta Astronautica,57(2-8):614-622.https://doi.org/10.1016/j.actaastro.2005.03.061
    Morshed MMM,Hansen CH,Zander AC,2013.Prediction of acoustic loads on a launch vehicle fairing during liftoff.Journal of Spacecraft and Rockets,50(1):159-168.https://doi.org/10.2514/1.A32324
    Murman SM,Diosady LT,2016.Simulation of a hammerhead payload fairing in the transonic regime.Proceedings of the 54th AIAA Aerospace Sciences Meeting.https://doi.org/10.2514/6.2016-1548
    Sziroczak D,Smith H,2016.A review of design issues specific to hypersonic flight vehicles.Progress in Aerospace Sciences,84:1-28.https://doi.org/10.1016/j.paerosci.2016.04.001
    Wang L,Zhu GX,Guan CQ,et al.,2016.Experimental investigation of dynamic separation for an inlet cover in Mach 6.0 flow.Proceedings of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.https://doi.org/10.2514/6.2016-4111
    Yang XX,Zhou Z,Peng K,2014.Aerodynamic shape design optimization of fairing based on kriging method.Journal of Solid Rocket Technology,37(2):167-171(in Chinese).https://doi.org/10.7673/j.issn.1006-2793.2014.02.005
    Zhang XM,Yang SL,Li P,2017.Numerical simulations of the inlet cover opening process.Journal of Solid Rocket Technology,40(3):307-312(in Chinese).https://doi.org/10.7673/j.issn.1006-2793.2017.03.008
    Zhao R,Rong JL,Li YJ,et al.,2017.An investigation of fluctuating pressure environment around rocket fairing with different curvetypes.Acta Armamentarii,38(5):1020-1026(in Chinese).https://doi.org/10.3969/j.issn.1000-1093.2017.05.023

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700