水体冻结过程中卤乙酸前体物在水-冰体系中的分配研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ratio of haloacetic acids precursor in water-ice system during the freezing processes of water
  • 作者:薛爽 ; 陈静 ; 铁梅 ; 惠秀娟 ; 张丽娜 ; 张营
  • 英文作者:XUE Shuang;CHEN Jing;TIE Mei;HUI Xiu-juan;ZHANG Li-na;ZHANG Ying;School of Environmental Science, Liaoning University;
  • 关键词:冻结 ; 溶解性有机物 ; 分级 ; 紫外光谱 ; 卤乙酸前体物
  • 英文关键词:freeze;;dissolved organic matter;;fractionation;;ultraviolet spectroscopy;;haloacetic acids precursors
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:辽宁大学环境学院;
  • 出版日期:2014-11-20
  • 出版单位:中国环境科学
  • 年:2014
  • 期:v.34
  • 基金:国家自然科学基金(21107039);; 辽宁省教育厅项目(L2011002);; 辽宁省科学技术计划项目(2011230009)
  • 语种:中文;
  • 页:ZGHJ201411009
  • 页数:8
  • CN:11
  • ISSN:11-2201/X
  • 分类号:55-62
摘要
通过室内模拟试验,研究了水体冻结过程中,水体中溶解性有机物(DOM)和卤乙酸前体物在水-冰体系中的分配规律.按照DOM在XAD树脂上的吸附特性将其分为5个部分:疏水性有机酸(HPO-A),疏水性中性有机物(HPO-N),过渡亲水性有机酸(TPI-A),过渡亲水性中性有机物(TPI-N)和亲水性有机物(HPI).结果表明:在水体冻结过程中,5种DOM组分在水相中的DOC浓度均随冷冻时间的增长而增加,呈现冷冻浓缩效应.与溶解性有机碳(DOC)所表征的整体有机物相比,5种DOM组分中的卤乙酸(HAAs)前体物更倾向于停留在水相中浓缩.在5种DOM组分中,HPI是主要的HAAs前体物.5种DOM组分在未冻结水中的UV-254与HAAFP均表现出一定相关性,其中HPO-A,TPI-A和HPI的UV-254与HAAFP达到极显著水平.然而在融冰水中,这5种DOM组分的UV-254与HAAFP的相关性均不显著.
        It was studied the partition of dissolved organic matter(DOM) fractions and haloacetic acids(HAAs) precursors in water-ice system during the freezing processes of water by the indoor simulating tests. DOM was fractionated using XAD resins into five fractions: hydrophobic acid(HPO-A), hydrophobic neutral(HPO-N), transphilic acid(TPI-A), transphilic neutral(TPI-N) and hydrophilic fraction(HPI). The results showed that the freezing rate of water samples containing acid fractions wove higher than samples containing neutral fractions. DOC concentrations for five DOM fractions in liquid phase increased with freezing time, presenting the freeze-concentration effect, during the freezing processes of water. HAAs precursors were more liable to be concentrated in liquid phase, as compared with the bulk DOM represented by dissolved organic carbon(DOC). HPI, among the five DOM fractions, was the main HAAs precursors. There was significant correlation between UV-254 and HAAFP for five DOM fractions in unfrozen liquid samples. Moreover, for HPO-A, TPI-A and HPI achieved very significant linear correlation. However, there was no significant correlation between UV-254 and HAAFP for all five DOM fractions in melted ice samples.
引文
[1]王宪恩,董德明,赵文晋,等.冰封期河流中有机污染物削减模式[J].吉林大学学报(理学版),2003,41(3):392-395.
    [2]黄曼君,李明玉,任刚,等.PFS-PDM复合混凝剂对微污染河水的强化混凝处理[J].中国环境科学,2011,31(3):384-389.
    [3]郑秋红,伍永秋,张永光.冰封期河流中污染物损耗估算模型[J].北京师范大学学报(自然科学版),2006,42(6):615-617.
    [4]Nomura D,Takatsuka T,Ishikawa M,et al.Transport of chemical components in sea ice and under-ice water during melting in the seasonally ice-covered Saroma-ko Lagoon,Hokkaido,Japan[J].Estuarine,Coastal and Shelf Science,2009,81(2):201-209.
    [5]黄继国,傅鑫廷,王雪松,等.湖水冰封期营养盐及浮游植物的分布特征[J].环境科学学报,2009,29(8):1678-1683.
    [6]李志军,王昕,李青山,等.不同条件下硝基苯在水-冰体系中的分配研究[J].中国科学(E辑:技术科学),2008,38(7):1131-1138.
    [7]郭瑾,马军.天然有机物提取及表征技术近期发展动态[J].现代化工,2007,27(2):12-16.
    [8]付军,滕曼,肖华.不同管材对氯胺消毒副产物生成与水质生物稳定性的影响[J].中国环境科学,2010,30(9):1189-1194.
    [9]Marhaba T F,Mangmeechai A,Chaiwatpongsakorn C,et al.Trihalomethanes formation potential of shrimp farm effluents[J].Journal of Hazardous Materials,2006,136(2):151-163.
    [10]李伟光,安东,崔福义,等.生物降解与吸附作用协同去除卤乙酸生成势[J].中国环境科学,2005,25(1):61-64.
    [11]孟丽苹,董兆敏,胡建英.全国自来水厂卤乙酸浓度调查,风险评估与标准建议[J].中国环境科学,2012,32(4):721-726.
    [12]Uyak V,Ozdemir K,Toroz I.Multiple linear regression modeling of disinfection by-products formation in Istanbul drinking water reservoirs[J].Science of the Total Environment,2007,378(3):269-280.
    [13]Leenheer J A,CrouéJ P.Peer reviewed:characterizing aquatic dissolved organic matter[J].Environmental Science and Technology,2003,37(1):18A-26A.
    [14]姜慧琴.乌梁素海营养盐在冰体中的空间分布及其在冻融过程中释放规律的试验研究[D].呼和浩特:内蒙古农业大学,2011.
    [15]Aiken G,Mc Knight D,Thorn K.,et al.Isolation of hydrophilic organic acids from water using nonionic macroporous resins[J].Organic Geochemistry,1992,18(4):567-573.
    [16]Kwon B,Lee S,Cho J,et al.Biodegradability,DBP formation,and membrane fouling potential of natural organic matter:Characterization and controllability[J].Environ.Sci.Technol.,2005,39(3):732-739.
    [17]USEPA.Method 552.3Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction derivatization,and gas chromatography with electron capture detection[S].2003.
    [18]余海静.自然冷冻法在污水处理中的应用研究[J].水处理技术,2012,38(3):107-110.
    [19]Mizuike A.Enrichment techniques for inorganic trace analysis[M].United States:Springer-Verlag Berlin and Heidelberg,New York,1983.
    [20]Spencer R G,Bolton L,Baker A.Freeze/thaw and p H effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations[J].Water Research,2007,41(13):2941-2950.
    [21]Fuentes M,González-Gaitano G,García-Mina J M.The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J].Organic Geochemistry,2006,37(12):1949-1959.
    [22]宋亚丽,董秉直,高乃云.不同氧化剂降低膜污染效果的研究[J].中国环境科学,2009,29(1):11-16.
    [23]Edzwald J K,Tobiason J E.Enhanced coagulation:US requirements and a broader view[J].Water Science and Technology,1999,40(4):63-70.
    [24]Reckhow D A,Singer P C,Malcolm R L.Chlorination of humicmaterials:byproduct formation and chemical interpretations[J].Environmental Science and Technology,1990,24:1655-1664.
    [25]Fellman J B,D'Amore D V,Hood E.An evaluation of freezing as a preservation technique for analyzing dissolved organic C,N and P in surface water samples[J].Science of the Total Environment,2008,392(2/3):305-312.
    [26]Barber L B,Leenheer J A,Noyes T I,et al.Nature and transformation of dissolved organic matter in treatment wetlands[J].Environ.Sci.Technol.,2001,35(24):4805-4816.
    [27]Chow A T,Guo F,Gao S,et al.Size and XAD fractionations of trihalomethane precursors from soils[J].Chemosphere,2006,62(10):1636-1646.
    [28]王立英,吴丰昌,张润宇.应用XAD系列树脂分离和富集天然水体中溶解有机质的研究进展[J].地球与环境,2006,34(1):90-96.
    [29]Chen J,Gu B,Le Boeuf E J,et al.Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J].Chemosphere,2002,48(1):59-68.
    [30]Gao W,Smith D,Sego D.Release of contaminants from melting spray ice of industrial wastewaters[J].Journal of Cold Regions Engineering,2004,18(1):35-51.
    [31]Daigger G T,Bailey E.Improving aerobic digestion by prethickening,staged operation,and aerobic-anoxic operation:Four full-scale demonstrations[J].Wat.Environ.Res.,2000,72(3):260-270.
    [32]Chellam S,Krasner S W.Disinfection byproduct relationships and speciation in chlorinated nanofiltered waters[J].Environ.Sci.Technol.,2001,35(19):3988-3999.
    [33]Chin Y P,Aiken G.,O'Loughlin E.Molecular weight,polydispersity,and spectroscopic properties of aquatic humic substances[J].Environ.Sci.Technol.,1994,28(11):1853-1858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700